| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Genetic biosensors for small-molecule products: Design and applications in high-throughput screening  | 
  					 
  					  										
						Qingzhuo Wang1,2,Shuang-Yan Tang3( ),Sheng Yang1,4( ) | 
					 
															
						1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200025, China 
2. University of the Chinese Academy of Sciences, Beijing 100049, China 
3. CAS Key Laboratory of Microbial Physiological and Metebolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 
4. Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				biosensor  
																		  																																				small molecule product  
																		  																																				transcription factor  
																		  																																				riboswitch  
																		  																																				high-throughput screening  
																																			  
															 | 
														 
																												
														 														
															| 
																
															 | 
														 
																																										
															| Fund:  | 
														 
																											    														
															| 
																																Corresponding Author(s):
																Shuang-Yan Tang,Sheng Yang   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 24 January 2017  
																																														Online First Date: 28 February 2017   
																																														Issue Date: 17 March 2017
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														     Schallmey M, Frunzke J, Eggeling L, Marienhagen J. Looking for the pick of the bunch: High-throughput screening of producing microorganisms with biosensors. Current Opinion in Biotechnology, 2014, 26: 148–154
														     														     	 
														     															     		https://doi.org/10.1016/j.copbio.2014.01.005
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														     Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, . Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940–943
														     														     	 
														     															     		https://doi.org/10.1038/nature04640
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														     Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796–802
														     														     	 
														     															     		https://doi.org/10.1038/nbt833
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														     Choi Y J, Lee S Y. Microbial production of short-chain alkanes. Nature, 2013, 502(7472): 571–574
														     														     	 
														     															     		https://doi.org/10.1038/nature12536
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														     Dellomonaco C, Clomburg J M, Miller E N, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355–359
														     														     	 
														     															     		https://doi.org/10.1038/nature10333
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														     Enquist-Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hanel A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R, . Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2013, 505(7482): 239–243
														     														     	 
														     															     		https://doi.org/10.1038/nature12771
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														     Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 2011, 13(2): 159–168
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2011.01.003
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														     Lee K H, Park J H, Kim T Y, Kim H U, Lee S Y. Systems metabolic engineering of Escherichia coli for L-threonine production. Molecular Systems Biology, 2007, 3(1): 149
														     															 | 
																  
																														
															| 9 | 
															 
														     Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25: 113–123
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2014.05.007
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														     Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, del Cardayre S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
														     														     	 
														     															     		https://doi.org/10.1038/415644a
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														     Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898
														     														     	 
														     															     		https://doi.org/10.1038/nature08187
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														     Cobb R E, Chao R, Zhao H M. Directed evolution: Past, present, and future. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(5): 1432–1440
														     														     	 
														     															     		https://doi.org/10.1002/aic.13995
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														     Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5): 612–616
														     														     	 
														     															     		https://doi.org/10.1038/nbt1083
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														     Jantama K, Haupt M J, Svoronos S A, Zhang X L, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140–1153
														     														     	 
														     															     		https://doi.org/10.1002/bit.21694
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														     Dietrich J A, McKee A E, Keasling J D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 2010, 79(1): 563–590
														     														     	 
														     															     		https://doi.org/10.1146/annurev-biochem-062608-095938
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														     Kim Y, Ingram L O, Shanmugam K T. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 2007, 73(6): 1766–1771
														     														     	 
														     															     		https://doi.org/10.1128/AEM.02456-06
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														     Zhou S, Iverson A G, Grayburn W S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnology Letters, 2008, 30(2): 335–342
														     														     	 
														     															     		https://doi.org/10.1007/s10529-007-9544-x
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														     Solem C, Dehli T, Jensen P R. Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013, 79(8): 2512–2518
														     														     	 
														     															     		https://doi.org/10.1128/AEM.03623-12
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														     Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic L-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915
														     														     	 
														     															     		https://doi.org/10.1128/AEM.03034-10
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														     Lim J H, Seo S W, Kim S Y, Jung G Y. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20: 49–55
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2013.09.003
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														     Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, . Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7(7): 445–452
														     														     	 
														     															     		https://doi.org/10.1038/nchembio.580
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														     Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97(11): 4811–4819
														     														     	 
														     															     		https://doi.org/10.1007/s00253-013-4760-x
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														     Zhang X, Jantama K, Moore J C, Shanmugam K T, Ingram L O. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355–366
														     														     	 
														     															     		https://doi.org/10.1007/s00253-007-1170-y
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														     Jantama K, Zhang X, Moore J C, Shanmugam K T, Svoronos S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881–893
														     														     	 
														     															     		https://doi.org/10.1002/bit.22005
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														     Klein-Marcuschamer D, Ajikumar P K, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 2007, 25(9): 417–424
														     														     	 
														     															     		https://doi.org/10.1016/j.tibtech.2007.07.006
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														     Santos C N S, Stephanopoulos G. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197
														     														     	 
														     															     		https://doi.org/10.1128/AEM.02448-07
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														     DeLoache W C, Russ Z N, Narcross L, Gonzales A M, Martin V J, Dueber J E. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465–471
														     														     	 
														     															     		https://doi.org/10.1038/nchembio.1816
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														     Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): 1
														     														     	 
														     															     		https://doi.org/10.1186/gb-2012-13-5-r40
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														     Lin H, Tao H, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. Journal of the American Chemical Society, 2004, 126(46): 15051–15059
														     														     	 
														     															     		https://doi.org/10.1021/ja046238v
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														     Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish V W. Chemical complementation: A reaction-independent genetic assay for enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16537–16542
														     														     	 
														     															     		https://doi.org/10.1073/pnas.262420099
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														     Frommer W B, Davidson M W, Campbell R E. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833–2841
														     														     	 
														     															     		https://doi.org/10.1039/b907749a
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														     Lalonde S, Ehrhardt D W, Frommer W B. Shining light on signaling and metabolic networks by genetically encoded biosensors. Current Opinion in Plant Biology, 2005, 8(6): 574–581
														     														     	 
														     															     		https://doi.org/10.1016/j.pbi.2005.09.015
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														     Okumoto S, Looger L L, Micheva K D, Reimer R J, Smith S J, Frommer W B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8740–8745
														     														     	 
														     															     		https://doi.org/10.1073/pnas.0503274102
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														     de Lorimier R M, Smith J J, Dwyer M A, Looger L L, Sali K M, Paavola C D, Rizk S S, Sadigov S, Conrad D W, Loew L, . Construction of a fluorescent biosensor family. Protein Science, 2002, 11(11): 2655–2675
														     														     	 
														     															     		https://doi.org/10.1110/ps.021860
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														     Fehr M, Lalonde S, Lager I, Wolff M W, Frommer W B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. Journal of Biological Chemistry, 2003, 278(21): 19127–19133
														     														     	 
														     															     		https://doi.org/10.1074/jbc.M301333200
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														     Fehr M, Takanaga H, Ehrhardt D W, Frommer W B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Molecular and Cellular Biology, 2005, 25(24): 11102–11112
														     														     	 
														     															     		https://doi.org/10.1128/MCB.25.24.11102-11112.2005
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														     Kaper T, Lager I, Looger L L, Chermak D, Frommer W B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnology for Biofuels, 2008, 1(1): 1
														     														     	 
														     															     		https://doi.org/10.1186/1754-6834-1-11
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														     Fehr M, Frommer W B, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9846–9851
														     														     	 
														     															     		https://doi.org/10.1073/pnas.142089199
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														     Deuschle K, Okumoto S, Fehr M, Looger L L, Kozhukh L, Frommer W B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Science, 2005, 14(9): 2304–2314
														     														     	 
														     															     		https://doi.org/10.1110/ps.051508105
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														     Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Science, 2009, 18(12): 2518–2527
														     														     	 
														     															     		https://doi.org/10.1002/pro.266
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														     Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17–24
														     														     	 
														     															     		https://doi.org/10.1016/j.cell.2012.12.024
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														     Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 2013, 4: 7
														     														     	 
														     															     		https://doi.org/10.1038/ncomms2404
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														     Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41(4): 2541–2551
														     														     	 
														     															     		https://doi.org/10.1093/nar/gks1330
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														     Trausch J J, Ceres P, Reyes F E, Batey R T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure (London, England), 2011, 19(10): 1413–1423
														     														     	 
														     															     		https://doi.org/10.1016/j.str.2011.06.019
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														     Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. Journal of the American Chemical Society, 2004, 126(41): 13247–13254
														     														     	 
														     															     		https://doi.org/10.1021/ja048634j
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														     Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456–460
														     														     	 
														     															     		https://doi.org/10.1126/science.1160311
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														     Michener J K, Smolke C D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metabolic Engineering, 2012, 14(4): 306–316
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2012.04.004
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														     Eckdahl T T, Campbell A M, Heyer L J, Poet J L, Blauch D N, Snyder N L, Atchley D T, Baker E J, Brown M, Brunner E C, . Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS One, 2015, 10(2): 0118322
														     														     	 
														     															     		https://doi.org/10.1371/journal.pone.0118322
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														     Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822
														     														     	 
														     															     		https://doi.org/10.1038/346818a0
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														     Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283–14288
														     														     	 
														     															     		https://doi.org/10.1073/pnas.0703961104
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														     Ouellet J. RNA Fluorescence with light-up aptamers.  Frontiers in Chemistry, 2016, 4: 29
														     															 | 
																  
																														
															| 52 | 
															 
														     Nakayama S, Luo Y, Zhou J, Dayie T K, Sintim H O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chemical Communications, 2012, 48(72): 9059–9061
														     														     	 
														     															     		https://doi.org/10.1039/c2cc34379g
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														     Wang X C, Wilson S C, Hammond M C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research, 2016, 44(17): e139–e139
														     														     	 
														     															     		https://doi.org/10.1093/nar/gkw580
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														     Kellenberger C A, Hammond M C. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods in Enzymology, 2015, 550: 147–172
														     														     	 
														     															     		https://doi.org/10.1016/bs.mie.2014.10.045
														     															     															     															 | 
																  
																														
															| 55 | 
															 
														     Paige J S, Nguyen-Duc T, Song W, Jaffrey S R. Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335(6073): 1194
														     														     	 
														     															     		https://doi.org/10.1126/science.1218298
														     															     															     															 | 
																  
																														
															| 56 | 
															 
														     Su Y, Hickey S F, Keyser S G, Hammond M C. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-L-homocysteine (SAH). Journal of the American Chemical Society, 2016, 138(22): 7040–7047
														     														     	 
														     															     		https://doi.org/10.1021/jacs.6b01621
														     															     															     															 | 
																  
																														
															| 57 | 
															 
														     Kellenberger C A, Chen C, Whiteley A T, Portnoy D A, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20): 6432–6435
														     														     	 
														     															     		https://doi.org/10.1021/jacs.5b00275
														     															     															     															 | 
																  
																														
															| 58 | 
															 
														     Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Research, 2013, 41(12): 6360–6369
														     														     	 
														     															     		https://doi.org/10.1093/nar/gkt312
														     															     															     															 | 
																  
																														
															| 59 | 
															 
														     Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21–29
														     														     	 
														     															     		https://doi.org/10.1021/sb400059y
														     															     															     															 | 
																  
																														
															| 60 | 
															 
														     Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch V F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158(4): 231–241
														     														     	 
														     															     		https://doi.org/10.1016/j.jbiotec.2011.06.003
														     															     															     															 | 
																  
																														
															| 61 | 
															 
														     Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metabolic Engineering, 2012, 14(4): 449–457
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2012.02.002
														     															     															     															 | 
																  
																														
															| 62 | 
															 
														     Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2015.09.017
														     															     															     															 | 
																  
																														
															| 63 | 
															 
														     Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One, 2014, 9(1): e85731
														     														     	 
														     															     		https://doi.org/10.1371/journal.pone.0085731
														     															     															     															 | 
																  
																														
															| 64 | 
															 
														     Bogner M, Ludewig U. Visualization of arginine influx into plant cells using a specific FRET-sensor. Journal of Fluorescence, 2007, 17(4): 350–360
														     														     	 
														     															     		https://doi.org/10.1007/s10895-007-0192-2
														     															     															     															 | 
																  
																														
															| 65 | 
															 
														     Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors & Bioelectronics, 2014, 59: 358–364
														     														     	 
														     															     		https://doi.org/10.1016/j.bios.2014.03.066
														     															     															     															 | 
																  
																														
															| 66 | 
															 
														     Mohsin M, Abdin M Z, Nischal L, Kardam H, Ahmad A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosensors & Bioelectronics, 2013, 50: 72–77
														     														     	 
														     															     		https://doi.org/10.1016/j.bios.2013.06.028
														     															     															     															 | 
																  
																														
															| 67 | 
															 
														     Wang J M, Gao D F, Yu X L, Li W, Qi Q S. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Applied Microbiology and Biotechnology, 2015, 99(20): 8527–8536
														     														     	 
														     															     		https://doi.org/10.1007/s00253-015-6615-0
														     															     															     															 | 
																  
																														
															| 68 | 
															 
														     Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, . Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 1
														     														     	 
														     															     		https://doi.org/10.1186/s12934-015-0311-8
														     															     															     															 | 
																  
																														
															| 69 | 
															 
														     Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M G, Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3(8): 623–628
														     														     	 
														     															     		https://doi.org/10.1038/nmeth895
														     															     															     															 | 
																  
																														
															| 70 | 
															 
														     Mahr R, von Boeselager R F, Wiechert J, Frunzke J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Applied Microbiology and Biotechnology, 2016, 100(15):6739–6753
														     															 | 
																  
																														
															| 71 | 
															 
														     Dietrich J A, Shis D L, Alikhani A, Keasling J D. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synthetic Biology, 2013, 2(1): 47–58
														     														     	 
														     															     		https://doi.org/10.1021/sb300091d
														     															     															     															 | 
																  
																														
															| 72 | 
															 
														     Szmidt-Middleton H L, Ouellet M, Adams P D, Keasling J D, Mukhopadhyay A. Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103: 68–73
														     														     	 
														     															     		https://doi.org/10.1016/j.ces.2013.06.044
														     															     															     															 | 
																  
																														
															| 73 | 
															 
														     Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 2010, 76(21): 7029–7035
														     														     	 
														     															     		https://doi.org/10.1128/AEM.00464-10
														     															     															     															 | 
																  
																														
															| 74 | 
															 
														     van Sint Fiet S, van Beilen J B, Witholt B. Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1693–1698
														     														     	 
														     															     		https://doi.org/10.1073/pnas.0504733102
														     															     															     															 | 
																  
																														
															| 75 | 
															 
														     Raman S, Rogers J K, Taylor N D, Church G M. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17803–17808
														     														     	 
														     															     		https://doi.org/10.1073/pnas.1409523111
														     															     															     															 | 
																  
																														
															| 76 | 
															 
														     Chen W, Zhang S, Jiang P X, Yao J, He Y Z, Chen L C, Gui X W, Dong Z Y, Tang S Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 2015, 30: 149–155
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2015.05.004
														     															     															     															 | 
																  
																														
															| 77 | 
															 
														     Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synthetic Biology, 2015, 4(12): 1261–1269
														     														     	 
														     															     		https://doi.org/10.1021/sb500365m
														     															     															     															 | 
																  
																														
															| 78 | 
															 
														     Tang S Y, Cirino P C. Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie International Edition, 2011, 50(5): 1084–1086
														     														     	 
														     															     		https://doi.org/10.1002/anie.201006083
														     															     															     															 | 
																  
																														
															| 79 | 
															 
														     Tang S Y, Qian S, Akinterinwa O, Frei C S, Gredell J A, Cirino P C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013, 135(27): 10099–10103
														     														     	 
														     															     		https://doi.org/10.1021/ja402654z
														     															     															     															 | 
																  
																														
															| 80 | 
															 
														     Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465–2483
														     														     	 
														     															     		https://doi.org/10.1093/jxb/erq442
														     															     															     															 | 
																  
																														
															| 81 | 
															 
														     Siedler S, Stahlhut S G, Malla S, Maury J, Neves A R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 2014, 21: 2–8
														     														     	 
														     															     		https://doi.org/10.1016/j.ymben.2013.10.011
														     															     															     															 | 
																  
																														
															| 82 | 
															 
														     Marin A M, Souza E M, Pedrosa F O, Souza L M, Sassaki G L, Baura V A, Yates M G, Wassem R, Monteiro R A. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology, 2013, 159(1): 167–175
														     														     	 
														     															     		https://doi.org/10.1099/mic.0.061135-0
														     															     															     															 | 
																  
																														
															| 83 | 
															 
														     Teran W, Felipe A, Segura A, Rojas A, Ramos J L, Gallegos M T. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3067–3072
														     														     	 
														     															     		https://doi.org/10.1128/AAC.47.10.3067-3072.2003
														     															     															     															 | 
																  
																														
															| 84 | 
															 
														     Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429
														     														     	 
														     															     		https://doi.org/10.1126/science.7510417
														     															     															     															 | 
																  
																														
															| 85 | 
															 
														     Thompson K M, Syrett H A, Knudsen S M, Ellington A D. Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2(1): 1
														     														     	 
														     															     		https://doi.org/10.1186/1472-6750-2-21
														     															     															     															 | 
																  
																														
															| 86 | 
															 
														     Chou H H, Keasling J D. Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4: 8
														     														     	 
														     															     		https://doi.org/10.1038/ncomms3595
														     															     															     															 | 
																  
																														
															| 87 | 
															 
														     Park Y H, Koo H M, Moon J O, Kim S J, Kim H J, Lee J K. L-Lysine-inducible promoter. US 07851198, <Date>Dec 14 2010</Date>, 2010
														     															 | 
																  
																														
															| 88 | 
															 
														     Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. Journal of Industrial Microbiology & Biotechnology, 2016, 43(9): 1227–1235
														     														     	 
														     															     		https://doi.org/10.1007/s10295-016-1803-1
														     															     															     															 | 
																  
																														
															| 89 | 
															 
														     Kim Y S, Gu M B. Advances in aptamer screening and small molecule aptasensors. Biosensors Based on Aptamers and Enzymes, 2014, 140: 29–67
														     														     	 
														     															     		https://doi.org/10.1007/10_2013_225
														     															     															     															 | 
																  
																														
															| 90 | 
															 
														     Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications.  Frontiers in Chemistry, 2016, 4: 14
														     															 | 
																  
																														
															| 91 | 
															 
														     McKeague M, Derosa M C. Challenges and opportunities for small molecule aptamer development. Journal of Nucleic Acids, 2012, 2012: 748913
														     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |