Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 174-183    https://doi.org/10.1007/s11705-017-1670-y
RESEARCH ARTICLE
Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers
Peyman P. Selakjani1, Majid Peyravi1, Mohsen Jahanshahi1(), Hamzeh Hoseinpour2, Ali S. Rad3, Soodabeh Khalili1
1. Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
2. Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
3. Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
 Download: PDF(470 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polysulfone (PSf) membranes were modified by either a new organic modifier (sulfonated poly(ether sulfide sulfone), SPESS) or a traditional modifier (rice hulk). These membranes were further reinforced with either multi-walled carbon nanotubes (MWCNTs) or silica nanoparticles. Having a dye rejection of 98.46%, the reinforced membranes increased more than 50% in strength but no change in solution flux was observed. The morphological and roughness studies were conducted using scanning electron microscopy and atomic force microscopy. Moreover, the PSF membranes were also characterized by differential scanning calorimetry. Modifying the membranes with organic modifier or nanofiller increases the glass transition temperature (Tg). The highest Tg and strength were observed for the PSf-SPESS-MWCNT membrane. SPESS decreases surface roughness but MWCNT increases roughness on the nanoscale. All membranes show a bimodal pore size distribution, whereas the PSf-SPESS-MWCNT membrane exhibits a relatively uniform distribution of macroscopic and microscopic pores.

Keywords polysulfone membrane      mechanical properties      micro- and nano-modification      binary and ternary system      dye removal     
Corresponding Author(s): Mohsen Jahanshahi   
Just Accepted Date: 19 June 2017   Online First Date: 29 December 2017    Issue Date: 26 February 2018
 Cite this article:   
Peyman P. Selakjani,Majid Peyravi,Mohsen Jahanshahi, et al. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers[J]. Front. Chem. Sci. Eng., 2018, 12(1): 174-183.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1670-y
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/174
Sample PSf /(w·w?1%) Modifier type Modifier /(w·w?1%) DMAc /(w·w?1%)
PSf 20 ? 0 80
PSf-SPESS 20 SPESS 0.25 79.75
PSf-RH 20 Rice husk 0.25 79.75
PSf-SNP 20 Silica 0.25 79.75
PSf-MWCNTs 20 MWCNTs 0.25 79.75
PSf-SPESS-SNP 20 SPESS and silica 0.25 (1:1) 79.75
PSf-SPESS-MWCNTs 20 SPESS and MWCNTs 0.25 (1:1) 79.75
Tab.1  Composition of fabricated membranes
Fig.1  FTIR spectra of fabricated membranes
Sample PSf
/(w?w?1%)
SPESS
/(w?w?1%)
RH
/(w?w?1%)
SNP
/(w?w?1%)
MWCNTs /(w?w?1%) Tensile strength /MPa Elongation at break /%
PSf 20 ? ? ? ? 15.88 10.36
PSf-SPESS 20 0.25 ? ? ? 24.51 11.16
PSf-RH 20 ? 0.25 ? ? 19.96 12.02
PSf-SNP 20 ? ? 0.25 ? 22.59 9.29
PSf-MWCNTs 20 ? ? ? 0.25 23.58 9.68
PSf-SPESS-SNP 20 0.125 ? 0.125 ? 22.79 9.59
PSf-SPESS-MWCNTs 20 0.125 ? ? 0.125 25.83 9.24
Tab.2  Mechanical characteristics of bulk modified PSf membranes
Fig.2  DSC thermograms of fabricated membranes
Membrane Pore parameter Roughness
Mean pore size /nm Sa/nm Sq/nm Sz/nm
PSf ~26 15.64 17.61 146.34
PSf-SPESS ~16 9.12 13.85 123.36
PSf-RH ~43 18.21 21.2 167.58
PSf-SNP ~30 16.49 18.12 158.67
PSf-MWCNTs ~35 17.64 20.87 149.39
PSf-SPESS-SNP ~19 9.81 14.68 134.97
PSf-SPESS-MWCNTs ~21 10.23 15.75 137.49
Tab.3  Surface analysis from AFM images
Fig.3  3D AFM images from the surface of the membranes
Fig.4  Surface and cross-sectional SEM images of fabricated membranes
Fig.5  CV permeation flux for fabricated membranes
Fig.6  CV rejection of fabricated membranes
1 Ng L Y, Leo  C P, Mohammad  A W. Optimizing the incorporation of silica nanoparticles in polysulfone/poly(vinyl alcohol) membranes with response surface methodology. Journal of Applied Polymer Science, 2011, 121(3): 1804–1814
https://doi.org/10.1002/app.33628
2 Zhao S, Wang  Z, Wang J,  Yang S, Wang  S. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. Journal of Membrane Science, 2011, 376(1-2): 83–95
https://doi.org/10.1016/j.memsci.2011.04.008
3 Shen C, Meng  Q, Zhang G. Chemical modification of polysulfone membrane by polyethylene glycol for resisting drug adsorption and self-assembly of hepatocytes. Journal of Membrane Science, 2011, 369(1-2): 474–481
https://doi.org/10.1016/j.memsci.2010.12.016
4 Padaki M, Isloor  A M, Wanichapichart  P. Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection application. Desalination, 2011, 279(1-3): 409–414
https://doi.org/10.1016/j.desal.2011.06.045
5 Shi L, Wang  R, Cao Y,  Liang D T,  Tay J H. Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 2008, 315(1-2): 195–204
https://doi.org/10.1016/j.memsci.2008.02.035
6 Rafiq S, Man  Z, Maulud A,  Muhammad N,  Maitra S. Effect of varying solvents compositions on morphology and gas permeation properties on membranes blends for CO2 separation from natural gas. Journal of Membrane Science, 2011, 378(1-2): 444–452
https://doi.org/10.1016/j.memsci.2011.05.025
7 Barth C, Goncalves  M, Pires A,  Roeder J,  Wolf B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299
https://doi.org/10.1016/S0376-7388(99)00344-0
8 Ionita M, Pandele  A M, Crica  L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139
https://doi.org/10.1016/j.compositesb.2013.11.018
9 Vilakati G D, Hoek  E M, Mamba  B B. Probing the mechanical and thermal properties of polysulfone membranes modified with synthetic and natural polymer additives. Polymer Testing, 2014, 34: 202–210
https://doi.org/10.1016/j.polymertesting.2014.01.014
10 Bai H, Zhou  Y, Zhang L. Morphology and mechanical properties of a new nanocrystalline cellulose/polysulfone composite membrane. Advances in Polymer Technology, 2015, 34(1): 21471–21478
https://doi.org/10.1002/adv.21471
11 Peyravi M, Rahimpour  A, Jahanshahi M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. Journal of Membrane Science, 2012, 423: 225–237
https://doi.org/10.1016/j.memsci.2012.08.019
12 Samal S K, Dash  M, Chiellini F,  Wang X, Chiellini  E, Declercq H A,  Kaplan D L. Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Advances, 2014, 4(96): 53547–53556
https://doi.org/10.1039/C4RA10070K
13 Yu K, Liu  Y, Leng J. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Advances, 2014, 4(6): 2961–2968
https://doi.org/10.1039/C3RA43258K
14 Misra A, Tyagi  P K, Rai  P, Misra D. FTIR spectroscopy of multiwalled carbon nanotubes: A simple approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 2007, 7(6): 1820–1823
https://doi.org/10.1166/jnn.2007.723
15 Lehman J H, Terrones  M, Mansfield E,  Hurst K E,  Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49(8): 2581–2602
https://doi.org/10.1016/j.carbon.2011.03.028
16 Pouresmaeel-Selkjani P,  Jahanshahi M,  Peyravi M. Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Performance Polymers, 2017, 29(7): 759–771 doi:10.1177/0954008316656742
17 Mohammadi-rovshandeh J,  Pouresmaeel-selakjani P,  Davachi S M,  Kaffashi B,  Hassani A,  Bahmeyi A. Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. Journal of Applied Polymer Science, 2014, 131(22): 41095–41102
https://doi.org/10.1002/app.41095
18 Ding Z, Zhong  L, Wang X,  Zhang L. Effect of lignin-cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Performance Polymers, 2016, 28(10): 1192–1200
https://doi.org/10.1177/0954008315621611
19 Davachi S M, Bakhtiari  S, Pouresmaeel-selakjani P, Mohammadi-rovshandeh J, Kaffashi B,  Davoodi S,  Yousefi A. Investigating the effect of treated rice straw in PLLA/starch composite: Mechanical, thermal, rheological, and morphological study. Advances in Polymer Technology, 2015, DOI: 10.1002/adv.21634 
20 Wen X, Lin  Y, Han C,  Zhang K,  Ran X, Li  Y, Dong L. Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science, 2009, 114(6): 3379–3388
https://doi.org/10.1002/app.30896
21 Liu C, Tobin  R. Effects of interadsorbate interactions on surface resistivity: Oxygen on sulfur-predosed Cu (100). Journal of Chemical Physics, 2008, 128(24): 244702
https://doi.org/10.1063/1.2940336
22 Zhang X, Gong  Z, Li J,  Lu T. Intermolecular sulfur∙∙∙oxygen interactions: Theoretical and statistical investigations. Journal of Chemical Information and Modeling, 2015, 55(10): 2138–2153
https://doi.org/10.1021/acs.jcim.5b00177
23 Bouajila J, Dole  P, Joly C,  Limare A. Some laws of a lignin plasticization. Journal of Applied Polymer Science, 2006, 102(2): 1445–1451
https://doi.org/10.1002/app.24299
24 Sivashinsky N, Tanny  G. Ionic heterogeneities in sulfonated polysulfone films. Journal of Applied Polymer Science, 1983, 28(10): 3235–3245
https://doi.org/10.1002/app.1983.070281018
25 Peinemann K V,  Abetz V,  Simon P F. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996
https://doi.org/10.1038/nmat2038
26 Nonjola P T, Mathe  M K, Modibedi  R M. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. International Journal of Hydrogen Energy, 2013, 38(12): 5115–5121
https://doi.org/10.1016/j.ijhydene.2013.02.028
27 Shirazi Y, Ghadimi  A, Mohammadi T. Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. Journal of Applied Polymer Science, 2012, 124(4): 2871–2882
https://doi.org/10.1002/app.35313
28 Marchese J, Anson  M, Ochoa N,  Prádanos P,  Palacio L,  Hernández A. Morphology and structure of ABS membranes filled with two different activated carbons. Chemical Engineering Science, 2006, 61(16): 5448–5454
https://doi.org/10.1016/j.ces.2006.04.013
29 Yan L, Li  Y S, Xiang  C B, Xianda  S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science, 2006, 276(1-2): 162–167
https://doi.org/10.1016/j.memsci.2005.09.044
30 Rahimpour A, Madaeni  S S, Mansourpanah  Y. Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science, 2010, 364(1-2): 380–388
https://doi.org/10.1016/j.memsci.2010.08.046
31 Barzin J, Sadatnia  B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. Journal of Membrane Science, 2008, 325(1): 92–97
https://doi.org/10.1016/j.memsci.2008.07.003
32 Senthilkumar S, Rajesh  S, Jayalakshmi A,  Aishwarya G,  Mohan D R. Preparation and performance evaluation of poly(ether-imide) incorporated polysulfone hemodialysis membranes. Journal of Polymer Research, 2012, 19(6): 1–11
https://doi.org/10.1007/s10965-012-9867-8
33 Peyravi M, Rahimpour  A, Jahanshahi M. Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. Journal of Membrane Science, 2015, 473: 72–84
https://doi.org/10.1016/j.memsci.2014.08.009
[1] Jing ZHANG, Chengchang JIA, Zhizhong JIA, Jillian LADEGARD, Yanhong GU, Junhui NIE. Strengthening mechanisms in carbon nanotube reinforced bioglass composites[J]. Front Chem Sci Eng, 2012, 6(2): 126-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed