| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Microfluidic dual loops reactor for conducting a multistep reaction  | 
  					 
  					  										
						Si Hyung Jin1, Jae-Hoon Jung2,3, Seong-Geun Jeong1, Jongmin Kim1, Tae Jung Park3, Chang-Soo Lee1( ) | 
					 
															
						1. Department of Chemical Engineering, Chungnam National University, Daejeon 34134, Korea 2. Lotte Chemical R&D Center, Daejeon 34110, Korea 3. Department of Chemistry, Chung-Ang University, Seoul 06974, Korea | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Precise control of each individual reaction that constitutes a multistep reaction must be performed to obtain the desired reaction product efficiently. In this work, we present a microfluidic dual loops reactor that enables multistep reaction by integrating two identical loop reactors. Specifically, reactants A and B are synthesized in the first loop reactor and transferred to the second loop reactor to synthesize with reactant C to form the final product. These individual reactions have nano-liter volumes and are carried out in a stepwise manner in each reactor without any cross-contamination issue. To precisely control the mixing efficiency in each loop reactor, we investigate the operating pressure and the operating frequency on the mixing valves for rotary mixing. This microfluidic dual loops reactor is integrated with several valves to realize the fully automated unit operation of a multistep reaction, such as metering the reactants, rotary mixing, transportation, and collecting the product. For proof of concept, CdSeZn nanoparticles are successfully synthesized in a microfluidic dual loops reactor through a fully automated multistep reaction. Taking all of these features together, this microfluidic dual loops reactor is a general microfluidic screening platform that can synthesize various materials through a multistep reaction. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				microfluidics  
																		  																																				multistep reaction  
																		  																																				rotary mixing  
																		  																																				nanoparticle  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Chang-Soo Lee   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 17 August 2017  
																																														Online First Date: 03 November 2017   
																																														Issue Date: 09 May 2018
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														     Webb D, Jamison  T F. Continuous flow multi-step organic synthesis. Chemical Science (Cambridge), 2010, 1(6): 675–680
														     														     	 
														     															     		https://doi.org/10.1039/c0sc00381f
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														     Shukla C A, Kulkarni  A A. Automating multistep flow synthesis: Approach and challenges in integrating chemistry, machines and logic. Beilstein Journal of Organic Chemistry, 2017, 13: 960–987
														     														     	 
														     															     		https://doi.org/10.3762/bjoc.13.97
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														     Porta R, Benaglia  M, Puglisi A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Organic Process Research & Development, 2016, 20(1): 2–25
														     														     	 
														     															     		https://doi.org/10.1021/acs.oprd.5b00325
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														     Bannock J H, Krishnadasan  S H, Nightingale  A M, Yau  C P, Khaw  K, Burkitt D,  Halls J J M,  Heeney M,  de Mello J C. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors. Advanced Functional Materials, 2013, 23(17): 2123–2129
														     														     	 
														     															     		https://doi.org/10.1002/adfm.201203014
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														     Duraiswamy S, Khan  S A. Droplet-dased microfluidic synthesis of anisotropic metal nanocrystals. Small, 2009, 5(24): 2828–2834
														     														     	 
														     															     		https://doi.org/10.1002/smll.200901453
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														     Duraiswamy S, Khan  S A. Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Letters, 2010, 10(9): 3757–3763
														     														     	 
														     															     		https://doi.org/10.1021/nl102478q
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														     Nightingale A M,  Bannock J H,  Krishnadasan S H,  O’Mahony F T F,  Haque S A,  Sloan J,  Drury C,  McIntyre R,  deMello J C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(12): 4067–4076
														     														     	 
														     															     		https://doi.org/10.1039/c3ta10458c
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														     McQuade D T, Seeberger  P H. Applying flow chemistry: Methods, materials, and multistep synthesis. Journal of Organic Chemistry, 2013, 78(13): 6384–6389
														     														     	 
														     															     		https://doi.org/10.1021/jo400583m
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														     Asadi-Saghandi H, Karimi-Sabet  J. Performance evaluation of a novel reactor configuration for oxidative dehydrogenation of ethane to ethylene. Korean Journal of Chemical Engineering, 2017, 34(7): 1905–1913
														     														     	 
														     															     		https://doi.org/10.1007/s11814-017-0025-1
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														     Pennemann H, Watts  P, Haswell S J,  Hessel V,  Lowe H. Benchmarking of microreactor applications. Organic Process Research & Development, 2004, 8(3): 422–439
														     														     	 
														     															     		https://doi.org/10.1021/op0341770
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														     Jahnisch K, Hessel  V, Lowe H,  Baerns M. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004, 43(4): 406–446
														     														     	 
														     															     		https://doi.org/10.1002/anie.200300577
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														     Sahoo H R, Kralj  J G, Jensen  K F. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angewandte Chemie International Edition, 2007, 46(30): 5704–5708
														     														     	 
														     															     		https://doi.org/10.1002/anie.200701434
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														     Singh R, Lee  H J, Singh  A K, Kim  D P. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean Journal of Chemical Engineering, 2016, 33(8): 2253–2267
														     														     	 
														     															     		https://doi.org/10.1007/s11814-016-0114-6
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														     Su M. Synthesis of highly monodisperse silica nanoparticles in the microreactor system. Korean Journal of Chemical Engineering, 2017, 34(2): 484–494
														     														     	 
														     															     		https://doi.org/10.1007/s11814-016-0297-x
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														     Lee C C, Sui  G D, Elizarov  A, Shu C Y J,  Shin Y S,  Dooley A N,  Huang J,  Daridon A,  Wyatt P,  Stout D, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science, 2005, 310(5755): 1793–1796
														     														     	 
														     															     		https://doi.org/10.1126/science.1118919
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														     Chen S P, Javed  M R, Kim  H K, Lei  J, Lazari M,  Shah G J,  van Dam R M,  Keng P Y,  Kim C J. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab on a Chip, 2014, 14(5): 902–910
														     														     	 
														     															     		https://doi.org/10.1039/C3LC51195B
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														     Kobayashi J, Mori  Y, Okamoto K,  Akiyama R,  Ueno M, Kitamori  T, Kobayashi S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science, 2004, 304(5675): 1305–1308
														     														     	 
														     															     		https://doi.org/10.1126/science.1096956
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														     Phillips T W, Lignos  I G, Maceiczyk  R M, deMello  A J, deMello  J C. Nanocrystal synthesis in microfluidic reactors: Where next? Lab on a Chip, 2014, 14(17): 3172–3180
														     														     	 
														     															     		https://doi.org/10.1039/C4LC00429A
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														     Chan E M, Mathies  R A, Alivisatos  A P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Letters, 2003, 3(2): 199–201
														     														     	 
														     															     		https://doi.org/10.1021/nl0259481
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														     Wang J, Bunimovich  Y L, Sui  G D, Savvas  S, Wang J Y,  Guo Y Y,  Heath J R,  Tseng H R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chemical Communications, 2006, •••(29): 3075–3077
														     														     	 
														     															     		https://doi.org/10.1039/b604426c
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														     Hou S, Wang  S, Yu Z T F,  Zhu N Q M,  Liu K, Sun  J, Lin W Y,  Shen C K F,  Fang X, Tseng  H R. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angewandte Chemie International Edition, 2008, 47(6): 1072–1075
														     														     	 
														     															     		https://doi.org/10.1002/anie.200704264
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														     Li W, Pharn  H H, Nie  Z, MacDonald B,  Guenther A,  Kumacheva E. Multi-step microfluidic polymerization reactions conducted in droplets: The internal trigger approach. Journal of the American Chemical Society, 2008, 130(30): 9935–9941
														     														     	 
														     															     		https://doi.org/10.1021/ja8029174
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														     Hartman R L, Naber  J R, Buchwald  S L, Jensen  K F. Multistep microchemical synthesis enabled by microfluidic distillation. Angewandte Chemie International Edition, 2010, 49(5): 899–903
														     														     	 
														     															     		https://doi.org/10.1002/anie.200904634
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														     Noel T, Kuhn  S, Musacchio A J,  Jensen K F,  Buchwald S L. Suzuki-Miyaura cross-coupling reactions in flow: Multistep synthesis enabled by a microfluidic extraction. Angewandte Chemie International Edition, 2011, 50(26): 5943–5946
														     														     	 
														     															     		https://doi.org/10.1002/anie.201101480
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														     Lee C C, Snyder  T M, Quake  S R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research, 2010, 38(8): 2514–2521
														     														     	 
														     															     		https://doi.org/10.1093/nar/gkq092
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														     Zhou X C, Cai  S Y, Hong  A L, You  Q M, Yu  P L, Sheng  N J, Srivannavit  O, Muranjan S,  Rouillard J M,  Xia Y M, et al. Microfluidic Picoarray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Research, 2004, 32(18): 5409–5417
														     														     	 
														     															     		https://doi.org/10.1093/nar/gkh879
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														     Kim E B, Seo  J M, Kim  G W, Lee  S Y, Park  T J. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells. Enzyme and Microbial Technology, 2016, 95: 201–208
														     														     	 
														     															     		https://doi.org/10.1016/j.enzmictec.2016.08.012
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														     Jeong H H, Jin  S H, Lee  B J, Kim  T, Lee C S. Microfluidic static droplet array for analyzing microbial communication on a population gradient. Lab on a Chip, 2015, 15(3): 889–899
														     														     	 
														     															     		https://doi.org/10.1039/C4LC01097C
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														     Jin S H, Jeong  H H, Lee  B, Lee S S,  Lee C S. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab on a Chip, 2015, 15(18): 3677–3686
														     														     	 
														     															     		https://doi.org/10.1039/C5LC00651A
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														     Jeong H H, Lee  B, Jin S H,  Jeong S G,  Lee C S. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution. Lab on a Chip, 2016, 16(9): 1698–1707
														     														     	 
														     															     		https://doi.org/10.1039/C6LC00212A
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														     Jang S, Lee  B, Jeong H H,  Jin S H,  Jang S, Kim  S G, Jung  G Y, Lee  C S. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab on a Chip, 2016, 16(10): 1909–1916
														     														     	 
														     															     		https://doi.org/10.1039/C6LC00118A
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														     Chou H P, Unger  M A, Quake  S R. A microfabricated rotary pump. Biomedical Microdevices, 2001, 3(4): 323–330
														     														     	 
														     															     		https://doi.org/10.1023/A:1012412916446
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														     Hong J W, Studer  V, Hang G,  Anderson W F,  Quake S R. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology, 2004, 22(4): 435–439
														     														     	 
														     															     		https://doi.org/10.1038/nbt951
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														     Yun J Y, Jambovane  S, Kim S K,  Cho S H,  Duin E C,  Hong J W. Log-scale dose response of inhibitors on a chip. Analytical Chemistry, 2011, 83(16): 6148–6153
														     														     	 
														     															     		https://doi.org/10.1021/ac201177g
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														     Wang Y J, Lin  W Y, Liu  K, Lin R J,  Selke M,  Kolb H C,  Zhang N G,  Zhao X Z,  Phelps M E,  Shen C K F,  Faull K F,  Tseng H R. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on a Chip, 2009, 9(16): 2281–2285
														     														     	 
														     															     		https://doi.org/10.1039/b907430a
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														     Unger M A, Chou  H P, Thorsen  T, Scherer A,  Quake S R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000, 288(5463): 113–116
														     														     	 
														     															     		https://doi.org/10.1126/science.288.5463.113
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														     Lin W Y, Wang  Y, Wang S,  Tseng H R. Integrated microfluidic reactors. Nano Today, 2009, 4(6): 470–481
														     														     	 
														     															     		https://doi.org/10.1016/j.nantod.2009.10.007
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														     Tseng H Y, Wang  C H, Lin  W Y, Lee  G B. Membrane-activated microfluidic rotary devices for pumping and mixing. Biomedical Microdevices, 2007, 9(4): 545–554
														     														     	 
														     															     		https://doi.org/10.1007/s10544-007-9062-6
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														     Chang C C, Yang  R J. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. Journal of Micromechanics and Microengineering, 2004, 14(4): 550–558
														     														     	 
														     															     		https://doi.org/10.1088/0960-1317/14/4/016
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														     Wang C H, Lee  G B. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosensors & Bioelectronics, 2005, 21(3): 419–425
														     														     	 
														     															     		https://doi.org/10.1016/j.bios.2004.11.004
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														     Wang C H, Lee  G B. Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels. Journal of Micromechanics and Microengineering, 2006, 16(2): 341–348
														     														     	 
														     															     		https://doi.org/10.1088/0960-1317/16/2/019
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														     Kelly K L, Coronado  E, Zhao L L,  Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668–677
														     														     	 
														     															     		https://doi.org/10.1021/jp026731y
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														     Zaniewski A M,  Schriver M,  Lee J G,  Crommie M F,  Zettl A. Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Applied Physics Letters, 2013, 102(2): 023108
														     														     	 
														     															     		https://doi.org/10.1063/1.4772542
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														     Seo W S, Jo  H H, Lee  K, Kim B,  Oh S J,  Park J T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angewandte Chemie International Edition, 2004, 43(9): 1115–1117
														     														     	 
														     															     		https://doi.org/10.1002/anie.200352400
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														     Bruchez M Jr, Moronne  M, Gin P,  Weiss S,  Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013–2016
														     														     	 
														     															     		https://doi.org/10.1126/science.281.5385.2013
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														     Coe S, Woo  W K, Bawendi  M, Bulovic V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803
														     														     	 
														     															     		https://doi.org/10.1038/nature01217
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														     McDonald S A, Konstantatos  G, Zhang S G,  Cyr P W,  Klem E J D,  Levina L,  Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138–142
														     														     	 
														     															     		https://doi.org/10.1038/nmat1299
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														     Sun Y G, Xia  Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179
														     														     	 
														     															     		https://doi.org/10.1126/science.1077229
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														     Song L M, Zhang  S J. Hydrothermal synthesis and highly visible light-induced photocatalytic activity of zinc-doped cadmium selenide photocatalysts. Chemical Engineering Journal, 2011, 166(2): 779–782
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2010.11.074
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														     Park T J, Lee  S Y, Heo  N S, Seo  T S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie International Edition, 2010, 49(39): 7019–7024
														     														     	 
														     															     		https://doi.org/10.1002/anie.201001524
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |