|
|
S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion |
Chao Zhang1, Chenbao Lu1, Shuai Bi1, Yang Hou2( ), Fan Zhang1( ), Ming Cai1, Yafei He1, Silvia Paasch3( ), Xinliang Feng3,4, Eike Brunner3, Xiaodong Zhuang1 |
1. State Key Laboratory of Metal Matrix Composites & Shanghai Key Lab of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China 3. Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany 4. Chair for Molecular Functional Materials, Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommensenstr. 4, 01069 Dresden, Germany |
|
|
Abstract Porous polymers have been recently recognized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom-containing monomers and versatile polymerization methods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmospheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m2·g−1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F·g−1 at 5 mV·s−1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV·s−1. Furthermore, as the electrochemical catalysts for oxygen reduction reaction, as-fabricated porous carbons presented ultralow half-wave-potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structure-performance interrelationship study of heteroatoms co-doped porous carbon for energy applications.
|
Keywords
porous polymers
porous carbons
sulfur and nitrogen doping
supercapacitor
|
Corresponding Author(s):
Yang Hou,Fan Zhang,Silvia Paasch
|
Just Accepted Date: 26 March 2018
Online First Date: 25 July 2018
Issue Date: 18 September 2018
|
|
1 |
Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347(6217): 1246501
https://doi.org/10.1126/science.1246501
pmid: 25554791
|
2 |
Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6(1): 7221
https://doi.org/10.1038/ncomms8221
pmid: 26072734
|
3 |
Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828
https://doi.org/10.1039/C1CS15060J
pmid: 21779609
|
4 |
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
https://doi.org/10.1038/nmat1368
pmid: 15867920
|
5 |
Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Advanced Materials, 2015, 27(3): 403–427
https://doi.org/10.1002/adma.201401857
pmid: 25155302
|
6 |
Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
https://doi.org/10.1039/C4EE03229B
|
7 |
Wu Z S, Parvez K, Feng X, MµLlen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487
https://doi.org/10.1038/ncomms3487
pmid: 24042088
|
8 |
Merlet C, Rotenberg B, Madden P A, Taberna P L, Simon P, Gogotsi Y, Salanne M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11(4): 306–310
https://doi.org/10.1038/nmat3260
pmid: 22388172
|
9 |
Zhuang X, Zhang F, Wu D, Feng X. Graphene coupled Schiff-base porous polymers: Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Advanced Materials, 2014, 26(19): 3081–3086
https://doi.org/10.1002/adma.201305040
pmid: 24519968
|
10 |
Zhuang X, Zhang F, Wu D, Forler N, Liang H, Wagner M, Gehrig D, Hansen M R, Laquai F, Feng X. Two-dimensional sandwich-type, graphene-based conjugated microporous polymers. Angewandte Chemie International Edition, 2013, 52(37): 9668–9672
https://doi.org/10.1002/anie.201304496
pmid: 23893563
|
11 |
Huang X, Yang L, Hao S, Zheng B, Yan L, Qu F, Asiri A M, Sun X. Sun X. N-Doped carbon dots: A metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4(3): 537–540
https://doi.org/10.1039/C6QI00517A
|
12 |
Liu Q, Pu Z, Tang C, Asiri A M, Qusti A H, Al-Youbi A O, Sun X. N-Doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 36: 57–61
https://doi.org/10.1016/j.elecom.2013.09.013
|
13 |
Ning R, Ge C, Liu Q, Tian J, Asiri A M, Alamry K A, Li C, Sun X. Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78: 60–69
https://doi.org/10.1016/j.carbon.2014.06.048
|
14 |
Tian J, Ning R, Liu Q, Asiri A M, Al-Youbi A O, Sun X. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2014, 6(2): 1011–1017
https://doi.org/10.1021/am404536w
pmid: 24377299
|
15 |
Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828
https://doi.org/10.1002/adma.200902812
pmid: 20217791
|
16 |
Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy & Environmental Science, 2014, 7(11): 3574–3592
https://doi.org/10.1039/C4EE01075B
|
17 |
Wang L, Yu P, Zhao L, Tian C, Zhao D, Zhou W, Yin J, Wang R, Fu H. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4(1): 5184
https://doi.org/10.1038/srep05184
pmid: 24898033
|
18 |
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009, 8(6): 500–506
https://doi.org/10.1038/nmat2460
pmid: 19448613
|
19 |
Zhang Y, Riduan S N. Functional porous organic polymers for heterogeneous catalysis. Chemical Society Reviews, 2012, 41(6): 2083–2094
https://doi.org/10.1039/C1CS15227K
pmid: 22134621
|
20 |
Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications. Chemical Society Reviews, 2013, 42(2): 548–568
https://doi.org/10.1039/C2CS35072F
pmid: 23060270
|
21 |
Su Y, Yao Z, Zhang F, Wang H, Mics Z, Cánovas E, Bonn M, Zhuang X, Feng X. Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Advanced Functional Materials, 2016, 26(32): 5893–5902
https://doi.org/10.1002/adfm.201602158
|
22 |
Zhuang X, Gehrig D, Forler N, Liang H, Wagner M, Hansen M R, Laquai F, Zhang F, Feng X. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Advanced Materials, 2015, 27(25): 3789–3796
https://doi.org/10.1002/adma.201501786
pmid: 25991493
|
23 |
Zhao W, Han S, Zhuang X, Zhang F, Mai Y, Feng X. Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(46): 23352–23359
https://doi.org/10.1039/C5TA06702B
|
24 |
Han S, Feng Y, Zhang F, Yang C, Yao Z, Zhao W, Qiu F, Yang L, Yao Y, Zhuang X, Feng X. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906
https://doi.org/10.1002/adfm.201501390
|
25 |
He Y, Gehrig D, Zhang F, Lu C, Zhang C, Cai M, Wang Y, Laquai F, Zhuang X, Feng X. Highly efficient electrocatalysts for oxygen reduction reaction based on 1D ternary doped porous carbons derived from carbon nanotube directed conjugated microporous polymers. Advanced Functional Materials, 2016, 26(45): 8255–8265
https://doi.org/10.1002/adfm.201603693
|
26 |
Yu J S, Kang S, Yoon S B, Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. Journal of the American Chemical Society, 2002, 124(32): 9382–9383
https://doi.org/10.1021/ja0203972
pmid: 12167027
|
27 |
Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537–1541
https://doi.org/10.1126/science.1200770
pmid: 21566159
|
28 |
Fechler N, Fellinger T P, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Advanced Materials, 2013, 25(1): 75–79
https://doi.org/10.1002/adma.201203422
pmid: 23027658
|
29 |
Deng X, Zhao B, Zhu L, Shao Z. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93: 48–58
https://doi.org/10.1016/j.carbon.2015.05.031
|
30 |
Liang H W, Zhuang X, BrµLler S, Feng X, MµLlen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5(1): 4973
https://doi.org/10.1038/ncomms5973
pmid: 25229121
|
31 |
Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Advanced Materials, 2016, 28(10): 1981–1987
https://doi.org/10.1002/adma.201505131
pmid: 26753773
|
32 |
Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726
https://doi.org/10.1016/j.carbon.2008.07.018
|
33 |
Xia K, Gao Q, Wu C, Song S, Ruan M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45(10): 1989–1996
https://doi.org/10.1016/j.carbon.2007.06.002
|
34 |
Debnath S, Bedi A, Zade S S. Thienopentathiepine: A sulfur containing fused heterocycle for conjugated systems and their electrochemical polymerization. Polymer Chemistry, 2015, 6(44): 7658–7665
https://doi.org/10.1039/C5PY01133G
|
35 |
Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Advanced Materials, 2017, 29(38): 1702428
https://doi.org/10.1002/adma.201702428
pmid: 28833545
|
36 |
Sandel V, Freedman H. Tetraphenylcyclobutadiene derivatives. VI. An investigation of the intermediacy of tetraphenylcyclobutadiene. Journal of the American Chemical Society, 1968, 90(8): 2059–2069
https://doi.org/10.1021/ja01010a027
|
37 |
Li T T T, Brubaker C H Jr. Catalytic oligomerization in the reaction of diphenylacetylene with chromium vapor. Inorganica Chimica Acta, 1982, 65: L113–L114
https://doi.org/10.1016/S0020-1693(00)93513-8
|
38 |
Schipper D J, Moh L C H, MµLler P, Swager T M. Dithiolodithiole as a building block for conjugated materials. Angewandte Chemie International Edition, 2014, 53(23): 5847–5851
https://doi.org/10.1002/anie.201310290
pmid: 24777607
|
39 |
Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, MµLlen K, Feng X. Persulfurated coronene: A new generation of “sulflower”. Journal of the American Chemical Society, 2017, 139(6): 2168–2171
https://doi.org/10.1021/jacs.6b12630
pmid: 28128953
|
40 |
Silverstein M, Visoly-Fisher I. Plasma polymerized thiophene: Molecular structure and electrical properties. Polymer, 2002, 43(1): 11–20
https://doi.org/10.1016/S0032-3861(01)00582-1
|
41 |
Vasquez M, Cruz G, Olayo M, Timoshina T, Morales J, Olayo R. Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer, 2006, 47(23): 7864–7870
https://doi.org/10.1016/j.polymer.2006.09.029
|
42 |
Kamat S V, Yadav J, Puri V, Puri R. Modification of the properties of polythiophene thin films by vapor chopping. Applied Surface Science, 2012, 258(19): 7567–7573
https://doi.org/10.1016/j.apsusc.2012.04.088
|
43 |
Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polymer Degradation & Stability, 2015, 120: 392–401
https://doi.org/10.1016/j.polymdegradstab.2015.07.021
|
44 |
Miron C, Hulubei C, Sava I, Quade A, Steuer A, Weltmann K D, Kolb J. Polyimide film surface modification by nanosecond high voltage pulse driven electrical discharges in water. Plasma Processes and Polymers, 2015, 12(8): 734–735
https://doi.org/10.1002/ppap.201400170
|
45 |
Sun D, Yang J, Yan X. Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chemical Communications, 2015, 51(11): 2134–2137
https://doi.org/10.1039/C4CC08297D
pmid: 25553914
|
46 |
Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy & Environmental Science, 2015, 8(10): 2916–2921
https://doi.org/10.1039/C5EE01985K
|
47 |
Yang S, Zhi L, Tang K, Feng X, Maier J, MµLlen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012, 22(17): 3634–3640
https://doi.org/10.1002/adfm.201200186
|
48 |
Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z, Exarhos G J, Liu J. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Advanced Materials, 2012, 24(9): 1176–1181
https://doi.org/10.1002/adma.201103392
pmid: 22278978
|
49 |
Kim J S, Hwang T H, Kim B G, Min J, Choi J W. A lithium-sulfur battery with a high areal energy density. Advanced Functional Materials, 2014, 24(34): 5359–5367
https://doi.org/10.1002/adfm.201400935
|
50 |
Cao C, Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X, 0. Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5(6): 2057–2064
https://doi.org/10.1039/C3PY01581E
|
51 |
Liu J, Yang T, Wang D, Lu G Q, Zhao D, Qiao S Z. Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4(1): 2798
https://doi.org/10.1038/ncomms3798
|
52 |
Lee M S, Park M, Kim H Y, Park S J. Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Scientific Reports, 2016, 6(1): 23224
https://doi.org/10.1038/srep23224
pmid: 26987683
|
53 |
Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013, 6(10): 2839–2855
https://doi.org/10.1039/c3ee41444b
|
54 |
Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy & Environmental Science, 2011, 4(4): 1440–1446
https://doi.org/10.1039/c0ee00261e
|
55 |
Niu Z, Zhou W, Chen X, Chen J, Xie S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Advanced Materials, 2015, 27(39): 6002–6008
https://doi.org/10.1002/adma.201502263
pmid: 26316309
|
56 |
Ran F, Zhang X, Liu Y, Shen K, Niu X, Tan Y, Kong L, Kang L, Xu C, Chen S. Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5(106): 87077–87083
https://doi.org/10.1039/C5RA15594K
|
57 |
Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, MµLlen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135
https://doi.org/10.1002/adma.201201948
pmid: 22807002
|
58 |
Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M, Forster M, Chassé T, Pichler T, Riedl T, Chen Y, Scherf U. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Advanced Materials, 2015, 27(42): 6714–6721
https://doi.org/10.1002/adma.201503390
pmid: 26413974
|
59 |
Chang J, Jin M, Yao F, Kim T H, Le V T, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Advanced Functional Materials, 2013, 23(40): 5074–5083
https://doi.org/10.1002/adfm201301851
|
60 |
Lei Z, Lu L, Zhao X. The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 2012, 5(4): 6391–6399
https://doi.org/10.1039/C1EE02478G
|
61 |
Sumboja A, Foo C Y, Wang X, Lee P S. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Advanced Materials, 2013, 25(20): 2809–2815
https://doi.org/10.1002/adma.201205064
pmid: 23580421
|
62 |
Nasini U B, Bairi V G, Ramasahayam S K, Bourdo S E, Viswanathan T, Shaikh A U. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. Journal of Power Sources, 2014, 250: 257–265
https://doi.org/10.1016/j.jpowsour.2013.11.014
|
63 |
Yuan K, Zhuang X, Fu H, Brunklaus G, Forster M, Chen Y, Feng X, Scherf U. Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 2016, 55(24): 6858–6863
https://doi.org/10.1002/anie.201600850
pmid: 27100378
|
64 |
Zhu J, Sakaushi K, Clavel G, Shalom M, Antonietti M, Fellinger T P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 2015, 137(16): 5480–5485
https://doi.org/10.1021/jacs.5b01072
pmid: 25851622
|
65 |
Nam G, Park J, Kim S T, Shin D B, Park N, Kim Y, Lee J S, Cho J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters, 2014, 14(4): 1870–1876
https://doi.org/10.1021/nl404640n
pmid: 24635744
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|