|
|
SCRaMbLE drive application of synthetic yeast genome |
Jin Jin, Yuan Ma, Duo Liu( ) |
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China |
|
|
|
Corresponding Author(s):
Duo Liu
|
Just Accepted Date: 04 June 2018
Online First Date: 26 October 2018
Issue Date: 03 January 2019
|
|
1 |
JCello, A V Paul, E Wimmer. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016–1018
https://doi.org/10.1126/science.1072266
pmid: 12114528
|
2 |
D GGibson, J I Glass, C Lartigue, V NNoskov, R YChuang, M AAlgire, G ABenders, M GMontague, LMa, M M Moodie, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56
https://doi.org/10.1126/science.1190719
pmid: 20488990
|
3 |
C AIII Hutchison, R YChuang, V NNoskov, NAssad-Garcia, T JDeerinck, M HEllisman, JGill, K Kannan, B JKaras, LMa, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253
|
4 |
NOstrov, M Landon, MGuell, GKuznetsov, JTeramoto, NCervantes, MZhou, K Singh, M GNapolitano, MMoosburner, et al. Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301): 819–822
https://doi.org/10.1126/science.aaf3639
pmid: 27540174
|
5 |
NAnnaluru, H Muller, L AMitchell, SRamalingam, GStracquadanio, S MRichardson, J SDymond, ZKuang, L ZScheifele, E MCooper, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55–58
https://doi.org/10.1126/science.1249252
pmid: 24674868
|
6 |
S MRichardson, L AMitchell, GStracquadanio, KYang, J S Dymond, J E DiCarlo, D Lee, C LHuang, SChandrasegaran, YCai, et al. Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040–1044
https://doi.org/10.1126/science.aaf4557
pmid: 28280199
|
7 |
L AMitchell, A Wang, GStracquadanio, ZKuang, X YWang, KYang, S Richardson, J AMartin, YZhao, R Walker, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: SynVI and beyond. Science, 2017, 355(6329): eaaf4831
|
8 |
YShen, Y Wang, TChen, FGao, J H Gong, D Abramczyk, RWalker, H CZhao, S HChen, WLiu, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355(6329): eaaf4791
|
9 |
YWu, B Z Li, M Zhao, L AMitchell, Z XXie, Q HLin, XWang, W H Xiao, Y Wang, XZhou, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355 (6329): eaaf4706
|
10 |
Z XXie, B Z Li, L A Mitchell, Y Wu, XQi, ZJin, B Jia, XWang, B XZeng, H MLiu, et al.“Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355 (6329): eaaf4704 1046
|
11 |
W MZhang, G H Zhao, Z Q Luo, Y C Lin, L H Wang, Y K Guo, A Wang, S YJiang, Q WJiang, J HGong, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355 (6329): eaaf3981
|
12 |
Z XXie, D Liu, B ZLi, MZhao, B X Zeng, Y Wu, YShen, TLin, P Yang, JDai, et al. Design and chemical synthesis of eukaryotic chromosomes. Chemical Society Reviews, 2017, 46(23): 7191–7207
https://doi.org/10.1039/C7CS00208D
pmid: 29094136
|
13 |
BJia, Y Wu, B ZLi, L AMitchell, HLiu, S Pan, JWang, H RZhang, NJia, B Li, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 1933, 2018(9): 1–13
pmid: 29789567
|
14 |
YWu, R Y Zhu, L A Mitchell, L Ma, RLiu, MZhao. In vitro DNA SCRaMbLE. Nature Communications, 1935, 2018(9): 1–9
pmid: 29789594
|
15 |
M JShen, Y Wu, KYang, Y XLi, HXu, H R Zhang, X Li, W HXiao, XZhou, L A Mitchell, et al. Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 1934, 2018(9): 1–8
pmid: 29789590
|
16 |
R ERamy, N Magroun, NMessadecq, LGauthier, FBoussin, FDantzer. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nature Communications, 1932, 2018(9): 1–10
|
17 |
Z QLuo, L H Wang, Y Wang, W MZhang, Y KGuo, YShen, L H Jiang, Q Y Wu, C Zhang, Y ZCai, et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nature Communications, 1930, 2018(9): 1–10
pmid: 29789541
|
18 |
WLiu, Z Q Luo, Y Wang, N TPham, LTuck, I Pérez-Pi, L YLiu, YShen, C French, MAuer, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nature Communications, 1936, 2018(9): 1–12
pmid: 29789543
|
19 |
LHochrein, L A Mitchell, K Schulz, KMesserschmidt. Mueller-roeber B. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nature Communications, 1931, 2018(9): 1–10
|
20 |
JWang, B Jia, Z XXie, Y JYuan. Improving prodeoxyviolacein production via Multiplex SCRaMbLE Iterative Cycles. Frontiers of Chemical Science and Engineering, 2018 (Online First), doi: 10.1007/s11705-018-1739-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|