Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (4) : 832-834    https://doi.org/10.1007/s11705-018-1749-0
VIEWS & COMMENTS
SCRaMbLE drive application of synthetic yeast genome
Jin Jin, Yuan Ma, Duo Liu()
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(62 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Duo Liu   
Just Accepted Date: 04 June 2018   Online First Date: 26 October 2018    Issue Date: 03 January 2019
 Cite this article:   
Jin Jin,Yuan Ma,Duo Liu. SCRaMbLE drive application of synthetic yeast genome[J]. Front. Chem. Sci. Eng., 2018, 12(4): 832-834.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1749-0
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I4/832
1 JCello, A V Paul, E Wimmer. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016–1018
https://doi.org/10.1126/science.1072266 pmid: 12114528
2 D GGibson, J I Glass, C Lartigue, V NNoskov, R YChuang, M AAlgire, G ABenders, M GMontague, LMa, M M Moodie, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56
https://doi.org/10.1126/science.1190719 pmid: 20488990
3 C AIII Hutchison, R YChuang, V NNoskov, NAssad-Garcia, T JDeerinck, M HEllisman, JGill, K Kannan, B JKaras, LMa, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253
4 NOstrov, M Landon, MGuell, GKuznetsov, JTeramoto, NCervantes, MZhou, K Singh, M GNapolitano, MMoosburner, et al. Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301): 819–822
https://doi.org/10.1126/science.aaf3639 pmid: 27540174
5 NAnnaluru, H Muller, L AMitchell, SRamalingam, GStracquadanio, S MRichardson, J SDymond, ZKuang, L ZScheifele, E MCooper, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55–58
https://doi.org/10.1126/science.1249252 pmid: 24674868
6 S MRichardson, L AMitchell, GStracquadanio, KYang, J S Dymond, J E DiCarlo, D Lee, C LHuang, SChandrasegaran, YCai, et al. Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040–1044
https://doi.org/10.1126/science.aaf4557 pmid: 28280199
7 L AMitchell, A Wang, GStracquadanio, ZKuang, X YWang, KYang, S Richardson, J AMartin, YZhao, R Walker, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: SynVI and beyond. Science, 2017, 355(6329): eaaf4831
8 YShen, Y Wang, TChen, FGao, J H Gong, D Abramczyk, RWalker, H CZhao, S HChen, WLiu, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355(6329): eaaf4791
9 YWu, B Z Li, M Zhao, L AMitchell, Z XXie, Q HLin, XWang, W H Xiao, Y Wang, XZhou, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355 (6329): eaaf4706
10 Z XXie, B Z Li, L A Mitchell, Y Wu, XQi, ZJin, B Jia, XWang, B XZeng, H MLiu, et al.“Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355 (6329): eaaf4704 1046
11 W MZhang, G H Zhao, Z Q Luo, Y C Lin, L H Wang, Y K Guo, A Wang, S YJiang, Q WJiang, J HGong, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355 (6329): eaaf3981
12 Z XXie, D Liu, B ZLi, MZhao, B X Zeng, Y Wu, YShen, TLin, P Yang, JDai, et al. Design and chemical synthesis of eukaryotic chromosomes. Chemical Society Reviews, 2017, 46(23): 7191–7207
https://doi.org/10.1039/C7CS00208D pmid: 29094136
13 BJia, Y Wu, B ZLi, L AMitchell, HLiu, S Pan, JWang, H RZhang, NJia, B Li, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 1933, 2018(9): 1–13
pmid: 29789567
14 YWu, R Y Zhu, L A Mitchell, L Ma, RLiu, MZhao. In vitro DNA SCRaMbLE. Nature Communications, 1935, 2018(9): 1–9
pmid: 29789594
15 M JShen, Y Wu, KYang, Y XLi, HXu, H R Zhang, X Li, W HXiao, XZhou, L A Mitchell, et al. Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 1934, 2018(9): 1–8
pmid: 29789590
16 R ERamy, N Magroun, NMessadecq, LGauthier, FBoussin, FDantzer. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nature Communications, 1932, 2018(9): 1–10
17 Z QLuo, L H Wang, Y Wang, W MZhang, Y KGuo, YShen, L H Jiang, Q Y Wu, C Zhang, Y ZCai, et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nature Communications, 1930, 2018(9): 1–10
pmid: 29789541
18 WLiu, Z Q Luo, Y Wang, N TPham, LTuck, I Pérez-Pi, L YLiu, YShen, C French, MAuer, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nature Communications, 1936, 2018(9): 1–12
pmid: 29789543
19 LHochrein, L A Mitchell, K Schulz, KMesserschmidt. Mueller-roeber B. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nature Communications, 1931, 2018(9): 1–10
20 JWang, B Jia, Z XXie, Y JYuan. Improving prodeoxyviolacein production via Multiplex SCRaMbLE Iterative Cycles. Frontiers of Chemical Science and Engineering, 2018 (Online First), doi: 10.1007/s11705-018-1739-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed