Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (5) : 913-927    https://doi.org/10.1007/s11705-019-1877-1
RESEARCH ARTICLE
Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures
Eniko Haaz1, Botond Szilagyi1, Daniel Fozer1, Andras Jozsef Toth1,2()
1. Environmental and Process Engineering Research Group, Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary
2. Institute of Chemistry, University of Miskolc, Miskolc H-3515, Hungary
 Download: PDF(4087 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The separation of non-ideal mixtures using distillation can be an extremely complex process and there continues to be a need to further improve these techniques. A new method which combines extractive heterogeneous-azeotropic distillation (EHAD) and hydrophilic pervaporation (HPV) for the separation of non-ideal ternary mixtures is demonstrated. This improved distillation method combines the benefits of heterogeneous-azeotropic and extractive distillations in one column but no added materials are needed as is usually the case with pervaporation. The separation of water-methanol-ethyl acetate and water-methanol-isopropyl acetate mixtures were investigated to demonstrate the accuracy of the combined EHAD/HPV technique. There is not currently an established treatment strategy for the separation of the second mixtures in the literature. These separation processes were rigorously modelled and optimized using a professional flowsheet. The objective functions were total cost and energy consumption and heat integration was also investigated. The verification of the process modelling was carried out using laboratory-scale measurements. Extractive heterogeneous-distillation combined with methanol dehydration was found to be more efficient than conventional distillation for the separation of these highly non-ideal mixtures.

Keywords hydrophilic pervaporation      non-ideal mixture      modelling      extractive heterogeneous-azeotropic distillation      heat integration     
Corresponding Author(s): Andras Jozsef Toth   
Online First Date: 06 March 2020    Issue Date: 25 May 2020
 Cite this article:   
Eniko Haaz,Botond Szilagyi,Daniel Fozer, et al. Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures[J]. Front. Chem. Sci. Eng., 2020, 14(5): 913-927.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1877-1
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I5/913
Fig.1  Schematic diagram of extractive heterogeneous-azeotropic distillation [5].
Azeotrope Boiling point
/°C
Component (i)
/wt-%
Component (j)
/wt-%
UNIQUAC
I J Type UijUjj UjiUii
EtAc MeOH Homo 62.3 53.2 46.8 773.59 ?147.599
Water EtAc Hetero 70.4−72.3 7.9−8.6 91.4?92.1 151.64 757.59
IpAc MeOH Homo 64.3 74.4 25.6 5319.32 ?1027.46
Water IpAc Hetero 81.7−82.8 12.2–16.2 83.8–87.8 245.7977 813.2316
Tab.1  Binary azeotropes of the investigated mixtures [2426]
Fig.2  Laboratory apparatus for investigation of extractive heterogeneous-azeotropic distillation [28].
Fig.3  Method I flowsheet for mixtures I and II.
Fig.4  Method II flowsheet for mixtures I and II.
EHAD column Feed Modelling results Experimental results
Mixture I Water D?u.p. W D?u.p. W
Water/wt-% 6 100 5.3 93.2 6.1 92.8
MeOH/wt-% 24 0 0.1 6.7 0.14 7.2
EtAc/wt-% 70 0 94.6 0.1 93.76 0
Stream/(kg?h?1) 0.5 2.5 0.36 2.60 0.36 2.58
Temperature /°C 20 20 70.9 94.6 69.3 96.0
Tab.2  Comparison of simulated and measured data for Mixture I with EHAD (Column I)
EHAD column Feed Modelling results Experimental results
Mixture II Water D?u.p. W D?u.p. W
Water/wt-% 6 100 2.07 96.1 2.2 95.9
MeOH/wt-% 24 0 0.07 3.8 0.1 4.1
IpAc/wt-% 70 0 97.87 0.1 97.7 0
Stream/(kg?h?1) 0.5 3.0 0.35 3.15 0.35 3.13
Temperature /°C 20 20 76.5 95.3 76.1 96.1
Tab.3  Comparison of simulated and measured data for Mixture II with EHAD (Column I)
Fig.5  Calculated equilibria and operating lines of EHAD (Mixture I).
Fig.6  Calculated equilibria and operating lines of EHAD (Mixture II).
Fig.7  Influence of the number of stages and reboiler duties on the TAC in the separation of Mixture I.
Fig.8  Influence of the number of stages and reboiler duties on the TAC in the separation of Mixture II.
Fig.9  Reboiler duty and minimal water consumption in the function of total stages (Mixture I, Column I).
Fig.10  Reboiler duty and minimal water consumption in the function of total stages (Mixture II, Column I).
Mixture I?Method I Column I Column II Column III
NTotal 10 20 30
NFeed 5 10 20
NExtractive agent 1
pFeed /Pa 105 3×105 105
Reflux ratio (RR) 1.0 0.5 2.0
Q-DISTCondenser /(MJ?h?1) ?582 ?1112 ?1532
Q-DISTReboiler /(MJ?h?1) 702 1250 1654
QPost cooler /(MJ?h?1) ?59 ?321
Mixture I?Method I F F F
Water/wt-% 4.5 7.9 69.8
MeOH/wt-% 24.8 5.9 30.1
EtAc/wt-% 70.7 86.3 0.1
Mixture stream/(kg?h?1) 1000 811 639
Extractive agent stream/(kg?h?1) 500 0 0
Temperature /°C 40.0 70.0 80.0
Mixture I?Method I D D D
Water/wt-% 11.5 10.1 0.2
MeOH/wt-% 6.5 7.7 99.5
EtAc/wt-% 82.1 82.2 0.3
Mixture stream/(kg?h?1) 861 622 191
Temperature/°C 74.6 101.9 64.2
Mixture I?Method I W W W
Water/wt-% 69.8 0.5 99.5
MeOH/wt-% 30.1 0.0 0.5
EtAc/wt-% 0.1 99.5 0.0
Mixture stream/(kg?h?1) 639 189 448
Temperature/°C 81.3 112.2 99.1
Tab.4  Final optimized parameters for Method I with Mixture I
Mixture I?Method II Column I Column II Column III PV
NTotal 10 20 6 ?
NFeed 5 10 3
NExtractive agent 1
pFeed /Pa 105 3×105 105 3×105
RR 1.0 0.5 0.1
Effective membrane area /m2 40
Q-DISTCondenser /(MJ?h?1) ?582 ?1112 -302
Q-DISTReboiler /(MJ?h?1) 702 1250 320
QPost cooler /(MJ?h?1) ?59 ?324 ?53
Q-PVFeed cooler /(MJ?h?1) ?5
Q-PVRetentate heating /(MJ?h?1) 202
Q-PVPermeate cooler /(MJ?h?1) ?37
Mixture I?Method II F F F F
Water/wt-% 4.5 7.9 69.8 9.9
MeOH/wt-% 24.8 5.9 30.1 90.0
EtAc/wt-% 70.7 86.3 0.1 0.1
Mixture stream/(kg?h?1) 1000 811 639 211
Extractive agent stream/(kg?h?1) 500 0 0 0
Temperature /°C 40.0 70.0 81.3 70.0
Mixture I?Method II D D D P
Water/wt-% 11.5 10.1 9.9 99.1
MeOH/wt-% 6.5 7.7 90.0 0.8
EtAc/wt-% 82.1 82.2 0.1 0.1
Mixture stream/(kg?h?1) 861 622 211 20
Temperature/°C 74.6 101.9 66.4 56.8
Mixture I?Method II W W W R
Water/wt-% 69.8 0.5 99.5 0.5
MeOH/wt-% 30.1 0.0 0.5 99.5
EtAc/wt-% 0.1 99.5 0.0 0.0
Mixture stream/(kg?h?1) 639 189 428 191
Temperature /°C 81.3 112.2 99.1 69.5
Tab.5  Final optimized parameters for Method II with Mixture I
Mixture II?Method I Column I Column II Column III
NTotal 16 12 40
NFeed 8 6 30
NExtractive agent 1
pFeed /Pa 105 105 105
RR 0.5 4.0 5.0
Q-DISTCondenser/(MJ?h?1) ?743 ?1357 ?1706
Q-DISTReboiler/(MJ?h?1) 946 1374 1747
QPost cooler/(MJ?h?1) ?42 ?219
Mixture II?Method I F F F
Water/wt-% 6.3 5.1 80.6
MeOH/wt-% 25.7 11.1 19.3
IpAc/wt-% 68.0 83.8 0.1
Mixture stream/(kg?h?1) 1000 835 765
Extractive agent stream/(kg?h?1) 700 0 0
Temperature /°C 40.0 70.0 80.0
Mixture II?Method I D D D
Water/wt-% 15.6 11.6 0.4
MeOH/wt-% 11.7 24.5 99.5
IpAc/wt-% 72.7 63.9 0.1
Mixture stream/(kg?h?1) 935 369 146
Temperature/°C 79.9 73.8 64.2
Mixture II?Method I W W W
Water/wt-% 80.6 0.0 99.5
MeOH/wt-% 19.3 0.5 0.4
IpAc/wt-% 0.1 99.5 0.1
Mixture stream/(kg?h?1) 765 466 620
Temperature /°C 85.7 87.8 99.0
Tab.6  Final optimized parameters for Method I with Mixture II
Mixture II?Method II Column I Column II Column III PV
NTotal 16 12 8 ?
NFeed 8 6 4
NExtractive agent 1
pFeed /Pa 105 105 105 3×105
RR 0.5 4.0 0.5
Effective membrane area /m2 35
Q-DISTCondenser /(MJ?h?1) ?743 ?1357 ?439
Q-DISTReboiler /(MJ?h?1) 946 1374 497
QPost cooler /(MJ?h?1) ?42 ?352 ?46
Q-PVFeed cooler /(MJ?h?1) ?4
Q-PVRetentate heating /(MJ?h?1) 195
Q-PVPermeate cooler /(MJ?h?1) ?29
Mixture II? Method II F F F F
Water/wt-% 6.3 5.1 80.6 9.9
MeOH/wt-% 25.7 11.1 19.3 90.0
IpAc/wt-% 68.0 83.8 0.1 0.1
Mixture stream/(kg?h?1) 1000 835 765 161
Extractive agent stream/(kg?h?1) 700 0 0 0
Temperature/°C 40.0 70.0 80.0 70.0
Mixture II?Method II D D D P
Water/wt-% 15.6 11.6 9.9 99.1
MeOH/wt-% 11.7 24.5 90.0 0.8
IpAc/wt-% 72.7 63.9 0.1 0.1
Mixture stream/(kg?h?1) 935 369 161 15
Temperature/°C 79.9 73.8 66.4 62.3
Mixture II?Method II W W W R
Water/wt-% 80.6 0.0 99.5 0.5
MeOH/wt-% 19.3 0.5 0.45 99.5
IpAc/wt-% 0.1 99.5 0.05 0.0
Mixture stream/(kg?h?1) 765 466 605 146
Temperature/°C 85.7 87.8 99.1 69.5
Tab.7  Final optimized parameters for Method II with Mixture II
Mixture Method Q-DISTReboiler/(MJ?h?1) Q-DISTCondenser/(MJ?h?1)
Basic HI Diff./% Basic HI Diff./%
Mixture I Method I 4484 3606 ?20 ?3923 ?3226 ?18
Method II 2764 2272 ?18 ?2368 ?1996 ?16
Mixture II Method I 4567 4067 ?11 ?4312 ?3806 ?12
Method II 3132 2817 ?10 ?2887 ?2539 ?12
Tab.8  Energy savings due to heat integration (HI)
Mixture I (10 years amortization) Method I Method II
1000 $·y−1 % 1000 $·y−1 %
Investment cost
Column 53 34
Reboiler 47 29
Condenser+ LLVF+ post cooler 15 12
PV-membrane modules 37
PV-feed cooler 6
PV-retentate heating 22
PV-permeate cooler 2
Total 115 12 142 21
Operating cost
Steam 823 505
Water 40 32
PV-membrane change 10
Total 863 88 547 79
TAC 978 ? 689 ?
Tab.9  Comparison of the cost elements of the two methods for Mixture I
Mixture II (10 years amortization) Method I Method II
1000 $·y−1 % 1000 $·y−1 %
Investment cost
Column 62 40
Reboiler 52 32
Condenser+ LLVF+ post cooler 20 16
PV-membrane modules 32
PV-feed cooler 5
PV-retentate heating 20
PV-permeate cooler 2
Total 134 13 147 20
Operating cost
Steam 834 542
Water 42 34
PV-membrane change 8
Total 876 87 584 80
TAC 1010 731 ?
Tab.10  Comparison of the cost elements of the two methods for Mixture II
A Membrane transfer area, m2
B Constant in pervaporation model
D Distillate product
Di Transport coefficient of component i, kmol?m?2?h?1
F Feed
NF Number of mixture feed stage
NT Number of total stages
p Pressure, bar
pi0 Pure i component vapor pressure, bar
pi1 Partial pressure of component i on the liquid phase membrane side, bar
pi3 Partial pressure of component i on the vapor phase membrane side, bar
P Permeate
Q Heat of duty, MJ?h?1
R Retentate
U UNIQUAC parameter
W Bottom product
x Concentration of component, wt-%
xi1
y
Concentration of component i in the feed, wt-%
Year
Greek letters
a ˜¯i Average activity coefficient of component i
  
1 A Szanyi, P Mizsey, Z Fonyo. Novel hybrid separation processes for solvent recovery based on positioning the extractive heterogeneous-azeotropic distillation. Chemical Engineering and Processing: Process Intensification, 2004, 43(3): 327–338
https://doi.org/10.1016/S0255-2701(03)00132-6
2 A Szanyi, P Mizsey, Z Fonyo. Optimization of nonideal separation structures based on extractive heterogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 2004, 43(26): 8269–8274
https://doi.org/10.1021/ie049575l
3 A Szanyi, P Mizsey, Z Fonyo. Separation of highly non-ideal quaternary mixtures with extractive heterogeneous-azeotropic distillation. Chemical and Biochemical Engineering Quarterly, 2005, 19: 111–121
4 A Szanyi. Separation of non-ideal quaternary mixtures with novel hybrid processes based on extractive heterogenous-azeotropic distillation. Dissertation for the Doctoral Degree. Budapest: Budapest University of Technology and Economics, 2005, 56–68
5 A J Toth, A Szanyi, K Angyal-Koczka, P Mizsey. Enhanced Separation of highly non-ideal mixtures with extractive heterogeneous-azeotropic distillation. Separation Science and Technology, 2016, 51(7): 1238–1247
https://doi.org/10.1080/01496395.2015.1107099
6 A J Toth, A Szanyi, E Haaz, P Mizsey. Separation of process wastewater with extractive heterogeneous-azeotropic distillation. Hungarian Journal of Industry and Chemistry, 2016, 44(1): 29–32
https://doi.org/10.1515/hjic-2016-0003
7 A M J C Wijesinghe. Development of industrial complexes of special rectification techniques for solvent recovery. Dissertation for the Doctoral Degree. Moscow: Lomonosov Institute of Fine Chemical Engineering, 1985, 20–48
8 P T Anastas, J C Warner. Green Chemistry: Theory and Practice. 1st ed. Boston: Oxford University Press, 1998, 110–121
9 M Franke, A Górak, J Strube. Design and optimization of hybrid separation processes. Chemieingenieurtechnik (Weinheim), 2004, 76(3): 199–210.
https://doi.org/10.1002/cite.200406150
10 M Skiborowski, A Harwardt, W Marquardt. Conceptual design of distillation-based hybrid separation processes. Annual Review of Chemical and Biomolecular Engineering, 2013, 4(1): 45–68
https://doi.org/10.1146/annurev-chembioeng-061010-114129
11 A Gorak, E Sorensen. Distillation: Fundamentals and Principles. 1st ed. Aachen: Academic Press, 2014, 321–330
12 A J Toth. Comprehensive evaluation and comparison of advanced separation methods on the separation of ethyl acetate-ethanol-water highly non-ideal mixture. Separation and Purification Technology, 2019, 224: 490–508
https://doi.org/10.1016/j.seppur.2019.05.051
13 N Valentinyi, P Mizsey. Comparison of pervaporation models with simulation of hybrid separation processes. Periodica Polytechnica. Chemical Engineering, 2014, 58(1): 7–14
https://doi.org/10.3311/PPch.7120
14 E Haaz, A J Toth. Methanol dehydration with pervaporation: Experiments and modelling. Separation and Purification Technology, 2018, 205: 121–129
https://doi.org/10.1016/j.seppur.2018.04.088
15 D Van Baelen, B Van der Bruggen, K Van den Dungen, J Degreve, C Vandecasteele. Pervaporation of water–alcohol mixtures and acetic acid–water mixtures. Chemical Engineering Science, 2005, 60(6): 1583–1590
https://doi.org/10.1016/j.ces.2004.10.030
16 R W Baker. Membrane Technology and Applications. 3rd ed. Chichester: Wiley, 2012, 30–45
17 J Kujawa, S Cerneaux, W Kujawski. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. Journal of Membrane Science, 2015, 474: 11–19
https://doi.org/10.1016/j.memsci.2014.08.054
18 W Kujawski. Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures. Separation Science and Technology, 2000, 35(1): 89–108
https://doi.org/10.1081/SS-100100145
19 K Zielińska, W Kujawski, A G Chostenko. Chitosan hydrogel membranes for pervaporative dehydration of alcohols. Separation and Purification Technology, 2011, 83: 114–120
https://doi.org/10.1016/j.seppur.2011.09.023
20 R Y M Huang. Pervaporation Membrane Separation Processes. 1st ed. Amsterdam: Elsevier, 1991, 1–109
21 X Liu, Y Sun, X Deng. Studies on the pervaporation membrane of permeation water from methanol/water mixture. Journal of Membrane Science, 2008, 325(1): 192–198
https://doi.org/10.1016/j.memsci.2008.07.031
22 P Luis, J Degrève, B van der Bruggen. Separation of methanol–n-butyl acetate mixtures by pervaporation: Potential of 10 commercial membranes. Journal of Membrane Science, 2013, 429: 1–12
https://doi.org/10.1016/j.memsci.2012.11.034
23 A J Toth, E Haaz, N Valentinyi, T Nagy, A J Tarjani, D Fozer, A Andre, A Selim, S Solti, P Mizsey. Selection between separation alternatives: Membrane flash index (MFLI). Industrial & Engineering Chemistry Research, 2018, 57(33): 11366–11373
https://doi.org/10.1021/acs.iecr.8b00430
24 J Gmehling, U Onken, J R Rarey-Nies. Vapor-Liquid Equilibrium Data Collection. Vapor-Liquid Equilibrium Data Collection: Aqueous-Organic Systems. 1st ed. Frankfurt: Dechema, 1978, 1(1):15–100
25 K Akita, F Yoshida. Phase-equilibria in methanol-ethyl acetate-water system. Journal of Chemical & Engineering Data, 1963, 8(4): 484–490
https://doi.org/10.1021/je60019a003
26 F M Casimiro, D S M Constantino, C S M Pereira, O Ferreira, A E Rodrigues, S P Pinho. Vapor–Liquid equilibrium of binary mixtures containing isopropyl acetate and alkanols at 101.32 kPa. Journal of Chemical & Engineering Data, 2015, 60(11): 3181–3186
https://doi.org/10.1021/acs.jced.5b00360
27 A J Toth, E Haaz, T Nagy, R Tari, A J Tarjani, D Fozer, A Szanyi, K Koczka, L Racz, G Ugro, P Mizsey. Evaluation of the accuracy of modelling the separation of highly non-ideal mixtures: Extractive heterogeneous-azeotropic distillation. Computer-Aided Chemical Engineering, 2017, 40: 241–246
https://doi.org/10.1016/B978-0-444-63965-3.50042-8
28 A Andre. Isobutanol-water separation with heterogeneous-azeotropic distillation. Dissertation for the Master Degree. Budapest: Budapest University of Technology and Economics, 2016, 40–43
29 N Valentinyi, E Csefalvay, P Mizsey. Modelling of pervaporation: Parameter estimation and model development. Chemical Engineering Research & Design, 2013, 91(1): 174–183
https://doi.org/10.1016/j.cherd.2012.07.001
30 R Rautenbach, C Herion, U Meyer-Blumentoth. Pervaporation membrane separation processes. Membrane Science and Technology Series, 1990, 1: 81–191
31 M T Ashraf, J E Schmidt, J Kujawa, W Kujawski, H A Arafat. One-dimensional modeling of pervaporation systems using a semi-empirical flux model. Separation and Purification Technology, 2017, 174: 502–512
https://doi.org/10.1016/j.seppur.2016.10.043
32 K Koch, A Gorak. Pervaporation of binary and ternary mixtures of acetone, isopropyl alcohol and water using polymeric membranes: Experimental characterisation and modelling. Chemical Engineering Science, 2014, 115: 95–114
https://doi.org/10.1016/j.ces.2014.02.009
33 A J Toth, A Andre, E Haaz, P Mizsey. New horizon for the membrane separation: Combination of organophilic and hydrophilic pervaporations. Separation and Purification Technology, 2015, 156: 432–443
https://doi.org/10.1016/j.seppur.2015.10.032
34 P Mizsey, K Koczka, A Deak, Z Fonyo. Simulation of pervaporation using the “solution-diffusion” model. Hungarian Journal of Industry and Chemistry, 2005, 7: 239–242
35 A J Toth. Liquid waste treatment with physicochemical tools for environmental protection. Dissertation for the Doctoral Degree. Budapest: Budapest University of Technology and Economics, 2015, 10–54
36 K Koczka, P Mizsey, Z Fonyo. Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Central European Journal of Chemistry, 2007, 5: 1124–1147
37 G F Tusel, H E A Bruschke. Use of pervaporation systems in the chemical industry. Desalination, 1985, 53(1-3): 327–338
https://doi.org/10.1016/0011-9164(85)85070-0
38 Q Pan, X Shang, J Li, S Ma, L Li, L Sun. Energy-efficient separation process and control scheme for extractive distillation of ethanol-water using deep eutectic solvent. Separation and Purification Technology, 2019, 219: 113–126
https://doi.org/10.1016/j.seppur.2019.03.022
39 J Chen, Q Ye, T Liu, H Xia, S Feng. Design and control of heterogeneous azeotropic distillation for separating 2-methylpyridine/water. Chemical Engineering & Technology, 2018, 41(10): 2024–2033
https://doi.org/10.1002/ceat.201800226
40 R Li, Q Ye, X Suo, X Dai, H Yu, S Feng, H Xia. Improving the performance of heat pump-assisted azeotropic dividing wall distillation. Industrial & Engineering Chemistry Research, 2016, 55(22): 6454–6464
https://doi.org/10.1021/acs.iecr.6b00937
41 K Liang, W Li, H Luo, M Xia, C Xu. Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column. Industrial & Engineering Chemistry Research, 2014, 53(17): 7121–7131
https://doi.org/10.1021/ie5002372
42 S Liang, Y Cao, X Liu, X Li, Y Zhao, Y Wang, Y Wang. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research & Design, 2017, 117: 318–335
https://doi.org/10.1016/j.cherd.2016.10.040
43 S Ma, X Shang, M Zhu, J Li, L Sun. Design, optimization and control of extractive distillation for the separation of isopropanol-water using ionic liquids. Separation and Purification Technology, 2019, 209: 833–850
https://doi.org/10.1016/j.seppur.2018.09.021
44 X Suo, Q Ye, R Li, S Feng, H Xia. Investigation about energy saving for synthesis of isobutyl acetate in the reactive dividing-wall column. Industrial & Engineering Chemistry Research, 2017, 56(19): 5607–5617
https://doi.org/10.1021/acs.iecr.6b04354
45 C Wang, C Wang, C Guang, Z Zhang. Comparison of extractive distillation separation sequences for acetonitrile/methanol/benzene multi-azeotropic mixtures. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2018, 93(11): 3302–3316
https://doi.org/10.1002/jctb.5693
46 M Xia, Y Xin, J Luo, W Li, L Shi, Y Min, C Xu. Temperature control for extractive dividing-wall column with an adjustable vapor split: Methylal/methanol azeotrope separation. Industrial & Engineering Chemistry Research, 2013, 52(50): 17996–18013
https://doi.org/10.1021/ie403176k
47 Y Zhao, K Ma, W Bai, D Du, Z Zhu, Y Wang, J Gao. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy, 2018, 148: 296–308
https://doi.org/10.1016/j.energy.2018.01.161
48 J M Douglas. Conceptual Design of Chemical Processes. 1st ed. New York: McGraw-Hill, 1988, 56–67
49 K Koczka. Environmental conscious design and industrial application of separation processes. Dissertation for the Doctoral Degree. Budapest: Budapest University of Technology and Economics, 2009, 12–30
50 A J Toth, B Szilagyi, E Haaz, S Solti, T Nagy, A Szanyi, J Nagy, P Mizsey. Enhanced separation of maximum boiling azeotropic mixtures with extractive heterogeneous-azeotropic distillation. Chemical Engineering Research & Design, 2019, 147: 55–62
https://doi.org/10.1016/j.cherd.2019.05.002
51 A J Toth, P Mizsey. Comparison of air and steam stripping: Removal of organic halogen compounds from process wastewaters. International Journal of Environmental Science and Technology, 2015, 12: 1321–1330
[1] Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Front. Chem. Sci. Eng., 2019, 13(2): 253-263.
[2] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[3] Remus I. Iacobescu, Valérie Cappuyns, Tinne Geens, Lubica Kriskova, Silviana Onisei, Peter T. Jones, Yiannis Pontikes. The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag[J]. Front. Chem. Sci. Eng., 2017, 11(3): 317-327.
[4] Andreja NEMET, Jiří Jaromír KLEMEŠ, Petar Sabev VARBANOV, Valter MANTELLI. Heat Integration retrofit analysis—an oil refinery case study by Retrofit Tracing Grid Diagram[J]. Front. Chem. Sci. Eng., 2015, 9(2): 163-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed