|
|
Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review |
Simin Feng1, Xiaoli Zhang2, Dunyun Shi3, Zheng Wang1( ) |
1. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China 2. Central Lab, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China 3. Institute of Hematology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China |
|
|
Abstract Zeolitic imidazolate framework-8 (ZIF-8), composed of Zn ions and imidazolate ligands, is a class of metal-organic frameworks, which possesses a similar structure as conventional aluminosilicate zeolites. This material exhibits inherent porous property, high loading capacity, and pH-sensitive degradation, as well as exceptional thermal and chemical stability. Extensive research effort has been devoted to relevant research aspects ranging from synthesis methods, property characterization to potential applications of ZIF-8. This review focuses on the recent development of ZIF-8 synthesis methods and its promising applications in drug delivery. The potential risks of using ZIF-8 for drug delivery are also summarized.
|
Keywords
zeolitic imidazolate framework-8 (ZIF-8)
synthesis methods
applications
drug delivery
|
Corresponding Author(s):
Zheng Wang
|
Just Accepted Date: 21 March 2020
Online First Date: 09 April 2020
Issue Date: 10 March 2021
|
|
1 |
A K Cheetham, C N Rao, R K Feller. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications, 2006, (46): 4780–4795
https://doi.org/10.1039/B610264F
|
2 |
J R Li, R J Kuppler, H C Zhou. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
https://doi.org/10.1039/b802426j
|
3 |
G Ferey, C Mellot-Draznieks, C Serre, F Millange. Crystallized frameworks with giant pores: Are there limits to the possible? Accounts of Chemical Research, 2005, 38(4): 217–225
https://doi.org/10.1021/ar040163i
|
4 |
M O’Keeffe, M A Peskov, S J Ramsden, O M Yaghi. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789
https://doi.org/10.1021/ar800124u
|
5 |
R Banerjee, A Phan, B Wang, C Knobler, H Furukawa, M O’Keeffe, O M Yaghi. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939–943
https://doi.org/10.1126/science.1152516
|
6 |
S A Moggach, T D Bennett, A K Cheetham. The effect of pressure on zif-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angewandte Chemie International Edition, 2009, 48(38): 7087–7089
https://doi.org/10.1002/anie.200902643
|
7 |
D Fairen-Jimenez, S A Moggach, M T Wharmby, P A Wright, S Parsons, T Duren. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society, 2011, 133(23): 8900–8902
https://doi.org/10.1021/ja202154j
|
8 |
F Wang, Y X Tan, H Yang, H X Zhang, Y Kang, J Zhang. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chemical Communications, 2011, 47(20): 5828–5830
https://doi.org/10.1039/c1cc10829h
|
9 |
Y Li, F Liang, H Bux, W Yang, J Caro. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
https://doi.org/10.1016/j.memsci.2010.02.074
|
10 |
Y Liu, E Hu, E A Khan, Z Lai. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40
https://doi.org/10.1016/j.memsci.2010.02.023
|
11 |
M C McCarthy, V Varela-Guerrero, G V Barnett, H K Jeong. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641
https://doi.org/10.1021/la102409e
|
12 |
H L Jiang, B Liu, T Akita, M Haruta, H Sakurai, Q Xu. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Journal of the American Chemical Society, 2009, 131(32): 11302–11303
https://doi.org/10.1021/ja9047653
|
13 |
C Chizallet, S Lazare, D Bazer-Bachi, F Bonnier, V Lecocq, E Soyer, A A Quoineaud, N Bats. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. Journal of the American Chemical Society, 2010, 132(35): 12365–12377
https://doi.org/10.1021/ja103365s
|
14 |
H Wu, W Zhou, T Yildirim. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2007, 129(17): 5314–5315
https://doi.org/10.1021/ja0691932
|
15 |
L J Murray, M Dinca, J R Long. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
https://doi.org/10.1039/b802256a
|
16 |
S Ma, H C Zhou. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 2010, 46(1): 44–53
https://doi.org/10.1039/B916295J
|
17 |
B V Harbuzaru, A Corma, F Rey, J L Jorda, D Ananias, L D Carlos, J Rocha. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angewandte Chemie International Edition, 2009, 48(35): 6476–6479
https://doi.org/10.1002/anie.200902045
|
18 |
G Lu, J T Hupp. Metal-organic frameworks as sensors: A ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 2010, 132(23): 7832–7833
https://doi.org/10.1021/ja101415b
|
19 |
D Lu, Y An, S Feng, X Li, A Fan, Z Wang, Y Zhao. Imidazole-bearing polymeric micelles for enhanced cellular uptake, rapid endosomal escape, and on-demand cargo release. AAPS PharmSciTech, 2018, 19(6): 2610–2619
https://doi.org/10.1208/s12249-018-1092-2
|
20 |
X Li, M Gao, K Xin, L Zhang, D Ding, D Kong, Z Wang, Y Shi, F Kiessling, T Lammers, J Cheng, Y Zhao. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21
https://doi.org/10.1016/j.jconrel.2017.05.025
|
21 |
J Li, X Meng, J Deng, D Lu, X Zhang, Y Chen, J Zhu, A Fan, D Ding, D Kong, Z Wang, Y Zhao. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128
https://doi.org/10.1021/acsami.8b06299
|
22 |
X Meng, J Deng, F Liu, T Guo, M Liu, P Dai, A Fan, Z Wang, Y Zhao. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Letters, 2019, 19(11): 7866–7876
https://doi.org/10.1021/acs.nanolett.9b02904
|
23 |
K S Park, Z Ni, A P Cote, J Y Choi, R Huang, F J Uribe-Romo, H K Chae, M O’Keeffe, O M Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
https://doi.org/10.1073/pnas.0602439103
|
24 |
S Rohani, T Isimjan, A Mohamed, H Kazemian, M Salem, T Wang. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Frontiers of Chemical Science and Engineering, 2011, 6(1): 112–122
https://doi.org/10.1007/s11705-011-1144-6
|
25 |
K Kida, M Okita, K Fujita, S Tanaka, Y Miyake. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794
https://doi.org/10.1039/c2ce26847g
|
26 |
X C Huang, Y Y Lin, J P Zhang, X M Chen. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559
https://doi.org/10.1002/anie.200503778
|
27 |
J P Zhang, A X Zhu, R B Lin, X L Qi, X M Chen. Pore surface tailored sod-type metal-organic zeolites. Advanced Materials, 2011, 23(10): 1268–1271
https://doi.org/10.1002/adma.201004028
|
28 |
A X Zhu, R B Lin, X L Qi, Y Liu, Y Y Lin, J P Zhang, X M Chen. Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157: 42–49
https://doi.org/10.1016/j.micromeso.2011.11.033
|
29 |
J Cravillon, S Münzer, S J Lohmeier, A Feldhoff, K Huber, M Wiebcke. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412
https://doi.org/10.1021/cm900166h
|
30 |
J Cravillon, R Nayuk, S Springer, A Feldhoff, K Huber, M Wiebcke. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141
https://doi.org/10.1021/cm103571y
|
31 |
J Cravillon, C A Schröder, H Bux, A Rothkirch, J Caro, M Wiebcke. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498
https://doi.org/10.1039/C1CE06002C
|
32 |
S K Nune, P K Thallapally, A Dohnalkova, C Wang, J Liu, G J Exarhos. Synthesis and properties of nano zeolitic imidazolate frameworks. Chemical Communications, 2010, 46(27): 4878–4880
https://doi.org/10.1039/c002088e
|
33 |
T D Bennett, P J Saines, D A Keen, J C Tan, A K Cheetham. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(22): 7049–7055
https://doi.org/10.1002/chem.201300216
|
34 |
M He, J Yao, L Li, K Wang, F Chen, H Wang. Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition. ChemPlusChem, 2013, 78(10): 1222–1225
https://doi.org/10.1002/cplu.201300193
|
35 |
K Shen, L Zhang, X Chen, L Liu, D Zhang, Y Han, J Chen, J Long, R Luque, Y Li, B Chen. Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359(6372): 206–210
https://doi.org/10.1126/science.aao3403
|
36 |
L Hu, Z Yan, J Zhang, X Peng, X Mo, A Wang, L Chen. Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity. Journal of Materials Science, 2019, 54(16): 11009–11023
https://doi.org/10.1007/s10853-019-03644-z
|
37 |
Y Chen, S Tang. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. Journal of Solid State Chemistry, 2019, 276: 68–74
https://doi.org/10.1016/j.jssc.2019.04.034
|
38 |
J Troyano, A Carne-Sanchez, C Avci, I Imaz, D Maspoch. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546
https://doi.org/10.1039/C9CS00472F
|
39 |
Y Pan, Y Liu, G Zeng, L Zhao, Z Lai. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47(7): 2071–2073
https://doi.org/10.1039/c0cc05002d
|
40 |
S Tanaka, K Kida, M Okita, Y Ito, Y Miyake. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41(10): 1337–1339
https://doi.org/10.1246/cl.2012.1337
|
41 |
A F Gross, E Sherman, J J Vajo. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions (Cambridge, England), 2012, 41(18): 5458–5460
https://doi.org/10.1039/c2dt30174a
|
42 |
J Yao, M He, K Wang, R Chen, Z Zhong, H Wang. High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15(18): 3601
https://doi.org/10.1039/c3ce27093a
|
43 |
M He, J Yao, Q Liu, K Wang, F Chen, H Wang. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014, 184: 55–60
https://doi.org/10.1016/j.micromeso.2013.10.003
|
44 |
B Seoane, J M Zamaro, C Tellez, J Coronas. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm, 2012, 14(9): 3103
https://doi.org/10.1039/c2ce06382d
|
45 |
H Y Cho, J Kim, S N Kim, W S Ahn. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184
https://doi.org/10.1016/j.micromeso.2012.11.012
|
46 |
K S Suslick, D A Hammerton, R E Cline. Sonochemical hot spot. Journal of the American Chemical Society, 1986, 108(18): 5641–5642
https://doi.org/10.1021/ja00278a055
|
47 |
W J Son, J Kim, J Kim, W S Ahn. Sonochemical synthesis of MOF-5. Chemical Communications, 2008, (47): 6336–6338
https://doi.org/10.1039/b814740j
|
48 |
M Schlesinger, S Schulze, M Hietschold, M Mehring. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and. Microporous and Mesoporous Materials, 2010, 132(1-2): 121–127
https://doi.org/10.1016/j.micromeso.2010.02.008
|
49 |
J F Fernández-Bertrán, M P Hernández, E Reguera, H Yee-Madeira, J Rodriguez, A Paneque, J C Llopiz. Characterization of mechanochemically synthesized imidazolates of Ag+1, Zn+2, Cd+2, and Hg+2: Solid state reactivity of nd10 cations. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1612–1617
https://doi.org/10.1016/j.jpcs.2006.02.006
|
50 |
C J Adams, H M Colquhoun, P C Crawford, M Lusi, A G Orpen. Solid-state interconversions of coordination networks and hydrogen-bonded salts. Angewandte Chemie International Edition, 2007, 119(7): 1142–1146
https://doi.org/10.1002/ange.200603593
|
51 |
P J Beldon, L Fabian, R S Stein, A Thirumurugan, A K Cheetham, T Friscic. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angewandte Chemie International Edition, 2010, 49(50): 9640–9643
https://doi.org/10.1002/anie.201005547
|
52 |
D Braga, M Curzi, A Johansson, M Polito, K Rubini, F Grepioni. Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. Angewandte Chemie International Edition, 2006, 45(1): 142–146
https://doi.org/10.1002/anie.200502597
|
53 |
T Friscic, D G Reid, I Halasz, R S Stein, R E Dinnebier, M J Duer. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angewandte Chemie International Edition, 2010, 49(4): 712–715
https://doi.org/10.1002/anie.200906583
|
54 |
S Tanaka, K Kida, T Nagaoka, T Ota, Y Miyake. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chemical Communications, 2013, 49(72): 7884–7886
https://doi.org/10.1039/c3cc43028f
|
55 |
S Cao, T D Bennett, D A Keen, A L Goodwin, A K Cheetham. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48(63): 7805–7807
https://doi.org/10.1039/c2cc33773h
|
56 |
D W Lewis, A R Ruiz-Salvador, A Gómez, L M Rodriguez-Albelo, F X Coudert, B Slater, A K Cheetham, C Mellot-Draznieks. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. CrystEngComm, 2009, 11(11): 2272
https://doi.org/10.1039/b912997a
|
57 |
J C Tan, A K Cheetham. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chemical Society Reviews, 2011, 40(2): 1059–1080
https://doi.org/10.1039/c0cs00163e
|
58 |
J C Tan, T D Bennett, A K Cheetham. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9938–9943
https://doi.org/10.1073/pnas.1003205107
|
59 |
M J Cliffe, C Mottillo, R S Stein, D K Bučar, T Friščić. Accelerated aging: A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chemical Science (Cambridge), 2012, 3(8): 2495
https://doi.org/10.1039/c2sc20344h
|
60 |
C Mottillo, Y Lu, M H Pham, M J Cliffe, T O Do, T Friščić. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15(8): 2121
https://doi.org/10.1039/c3gc40520f
|
61 |
J Lee, O K Farha, J Roberts, K A Scheidt, S T Nguyen, J T Hupp. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459
https://doi.org/10.1039/b807080f
|
62 |
D J Xiao, E D Bloch, J A Mason, W L Queen, M R Hudson, N Planas, J Borycz, A L Dzubak, P Verma, K Lee, F Bonino, V Crocellà, J Yano, S Bordiga, D G Truhlar, L Gagliardi, C M Brown, J R Long. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nature Chemistry, 2014, 6(7): 590–595
https://doi.org/10.1038/nchem.1956
|
63 |
L T L Nguyen, K K A Le, H X Truong, N T S Phan. Metal-organic frameworks for catalysis: The knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology, 2012, 2(3): 521–528
https://doi.org/10.1039/C1CY00386K
|
64 |
U P N Tran, K K A Le, N T S Phan. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 2011, 1(2): 120–127
https://doi.org/10.1021/cs1000625
|
65 |
Y Hu, S Zheng, F Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541
https://doi.org/10.1007/s11705-016-1596-9
|
66 |
O K Farha, A O Yazaydin, I Eryazici, C D Malliakas, B G Hauser, M G Kanatzidis, S T Nguyen, R Q Snurr, J T Hupp. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948
https://doi.org/10.1038/nchem.834
|
67 |
N L Rosi, J Eckert, M Eddaoudi, D T Vodak, J Kim, M O’Keeffe, O M Yaghi. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127–1129
https://doi.org/10.1126/science.1083440
|
68 |
S Yang, X Lin, W Lewis, M Suyetin, E Bichoutskaia, J E Parker, C C Tang, D R Allan, P J Rizkallah, P Hubberstey, N R Champness, K Mark Thomas, A J Blake, M Schröder. A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 2012, 11(8): 710–716
https://doi.org/10.1038/nmat3343
|
69 |
N Al-Janabi, A Alfutimie, F R Siperstein, X Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107
https://doi.org/10.1007/s11705-015-1552-0
|
70 |
Y Wang, C Li, F Meng, S Lv, J Guo, X Liu, C Wang, Z Ma. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345
https://doi.org/10.1007/s11705-014-1438-6
|
71 |
W Ma, Q Jiang, P Yu, L Yang, L Mao. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Analytical Chemistry, 2013, 85(15): 7550–7557
https://doi.org/10.1021/ac401576u
|
72 |
S Liu, Z Xiang, Z Hu, X Zheng, D Cao. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 2011, 21(18): 6649
https://doi.org/10.1039/c1jm10166h
|
73 |
S Liu, L Wang, J Tian, Y Luo, G Chang, A M Asiri, A O Al-Youbi, X Sun. Application of zeolitic imidazolate framework-8 nanoparticles for the fluorescence-enhanced detection of nucleic acids. ChemPlusChem, 2012, 77(1): 23–26
https://doi.org/10.1002/cplu.201100010
|
74 |
R P Ojha, P A Lemieux, P K Dixon, A J Liu, D J Durian. Statistical mechanics of a gas-fluidized particle. Nature, 2004, 427(6974): 521–523
https://doi.org/10.1038/nature02294
|
75 |
G Ferey, C Mellot-Draznieks, C Serre, F Millange, J Dutour, S Surble, I Margiolaki. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
https://doi.org/10.1126/science.1116275
|
76 |
M Eddaoudi, D B Moler, H Li, B Chen, T M Reineke, M O’Keeffe, O M Yaghi. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001, 34(4): 319–330
https://doi.org/10.1021/ar000034b
|
77 |
B Chen, S Xiang, G Qian. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research, 2010, 43(8): 1115–1124
https://doi.org/10.1021/ar100023y
|
78 |
C Y Sun, C Qin, X L Wang, G S Yang, K Z Shao, Y Q Lan, Z M Su, P Huang, C G Wang, E B Wang. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions (Cambridge, England), 2012, 41(23): 6906–6909
https://doi.org/10.1039/c2dt30357d
|
79 |
G Lu, S Li, Z Guo, O K Farha, B G Hauser, X Qi, Y Wang, X Wang, S Han, X Liu, et al.. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4(4): 310–316
https://doi.org/10.1038/nchem.1272
|
80 |
S R Venna, J B Jasinski, M A Carreon. Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2010, 132(51): 18030–18033
https://doi.org/10.1021/ja109268m
|
81 |
M R Broadley, P J White, J P Hammond, I Zelko, A Lux. Zinc in plants. New Phytologist, 2007, 173(4): 677–702
https://doi.org/10.1111/j.1469-8137.2007.01996.x
|
82 |
H Zheng, Y Zhang, L Liu, W Wan, P Guo, A M Nystrom, X Zou. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. Journal of the American Chemical Society, 2016, 138(3): 962–968
https://doi.org/10.1021/jacs.5b11720
|
83 |
H Wang, T Li, J Li, W Tong, C Gao. One-pot synthesis of poly(ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 568: 224–230
https://doi.org/10.1016/j.colsurfa.2019.02.025
|
84 |
P Horcajada, T Chalati, C Serre, B Gillet, C Sebrie, T Baati, J F Eubank, D Heurtaux, P Clayette, C Kreuz, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010, 9(2): 172–178
https://doi.org/10.1038/nmat2608
|
85 |
N A Soomro, Q Wu, S A Amur, H Liang, A Ur Rahman, Q Yuan, Y Wei. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent. Colloids and Surfaces. B, Biointerfaces, 2019, 182: 110364
https://doi.org/10.1016/j.colsurfb.2019.110364
|
86 |
P V Almeida, M A Shahbazi, E Makila, M Kaasalainen, J Salonen, J Hirvonen, H A Santos. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6(17): 10377–10387
https://doi.org/10.1039/C4NR02187H
|
87 |
A Abednejad, A Ghaee, J Nourmohammadi, A A Mehrizi. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydrate Polymers, 2019, 222: 115033
https://doi.org/10.1016/j.carbpol.2019.115033
|
88 |
F Shu, D Lv, X L Song, B Huang, C Wang, Y Yu, S C Zhao. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Advances, 2018, 8(12): 6581–6589
https://doi.org/10.1039/C7RA12969F
|
89 |
N Liedana, A Galve, C Rubio, C Tellez, J Coronas. CAF@ZIF-8: One-step encapsulation of caffeine in MOF. ACS Applied Materials & Interfaces, 2012, 4(9): 5016–5021
https://doi.org/10.1021/am301365h
|
90 |
M de Matas, H G M Edwards, E E Lawson, L Shields, P York. Ft-Raman spectroscopic investigation of a pseudopolymorphic transition in caffeine hydrate. Journal of Molecular Structure, 1998, 440(1-3): 97–104
https://doi.org/10.1016/S0022-2860(97)00231-7
|
91 |
C Chu, H Lin, H Liu, X Wang, J Wang, P Zhang, H Gao, C Huang, Y Zeng, Y Tan, G Liu, X Chen. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Advanced Materials, 2017, 29(23): 1605928
https://doi.org/10.1002/adma.201605928
|
92 |
J T Robinson, K Welsher, S M Tabakman, S P Sherlock, H Wang, R Luong, H Dai. High performance in vivo near-IR (>1 mm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3(11): 779–793
https://doi.org/10.1007/s12274-010-0045-1
|
93 |
M Li, X Yang, J Ren, K Qu, X Qu. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728
https://doi.org/10.1002/adma.201104864
|
94 |
K Yang, L Feng, X Shi, Z Liu. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
https://doi.org/10.1039/C2CS35342C
|
95 |
L Dykman, N Khlebtsov. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282
https://doi.org/10.1039/C1CS15166E
|
96 |
N Khlebtsov, L Dykman. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 2011, 40(3): 1647–1671
https://doi.org/10.1039/C0CS00018C
|
97 |
X Ren, H Chen, V Yang, D Sun. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Frontiers of Chemical Science and Engineering, 2014, 8(3): 253–264
https://doi.org/10.1007/s11705-014-1425-y
|
98 |
S Zhang, C Sun, J Zeng, Q Sun, G Wang, Y Wang, Y Wu, S Dou, M Gao, Z Li. Ambient aqueous synthesis of ultrasmall PEGylated Cu2–x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Advanced Materials, 2016, 28(40): 8927–8936
https://doi.org/10.1002/adma.201602193
|
99 |
Y Wang, Y Wu, Y Liu, J Shen, L Lv, L Li, L Yang, J Zeng, Y Wang, L W Zhang,et al.. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 2016, 26(29): 5335–5344
https://doi.org/10.1002/adfm.201601341
|
100 |
F Gao, M Sun, L Xu, L Liu, H Kuang, C Xu. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Advanced Functional Materials, 2017, 27(24): 1700605
https://doi.org/10.1002/adfm.201700605
|
101 |
S Song, H Shen, T Yang, L Wang, H Fu, H Chen, Z Zhang. Indocyanine green loaded magnetic carbon nanoparticles for near infrared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Applied Materials & Interfaces, 2017, 9(11): 9484–9495
https://doi.org/10.1021/acsami.7b00490
|
102 |
B Zhou, Y Li, G Niu, M Lan, Q Jia, Q Liang. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Applied Materials & Interfaces, 2016, 8(44): 29899–29905
https://doi.org/10.1021/acsami.6b07838
|
103 |
Y Li, N Xu, J Zhou, W Zhu, L Li, M Dong, H Yu, L Wang, W Liu, Z Xie. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6(11): 2918–2924
https://doi.org/10.1039/C8BM00830B
|
104 |
Y Li, N Xu, W Zhu, L Wang, B Liu, J Zhang, Z Xie, W Liu. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Applied Materials & Interfaces, 2018, 10(27): 22974–22984
https://doi.org/10.1021/acsami.8b06125
|
105 |
C Zheng, M Zheng, P Gong, D Jia, P Zhang, B Shi, Z Sheng, Y Ma, L Cai. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials, 2012, 33(22): 5603–5609
https://doi.org/10.1016/j.biomaterials.2012.04.044
|
106 |
M Zheng, C Yue, Y Ma, P Gong, P Zhao, C Zheng, Z Sheng, P Zhang, Z Wang, L Cai. Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3): 2056–2067
https://doi.org/10.1021/nn400334y
|
107 |
S Mordon, J M Devoisselle, S Soulie-Begu, T Desmettre. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvascular Research, 1998, 55(2): 146–152
https://doi.org/10.1006/mvre.1998.2068
|
108 |
T Wang, S Li, Z Zou, L Hai, X Yang, X Jia, A Zhang, D He, X He, K Wang. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(23): 3914–3921
https://doi.org/10.1039/C8TB00351C
|
109 |
A Juzeniene, Q Peng, J Moan. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochemical & Photobiological Sciences, 2007, 6(12): 1234–1245
https://doi.org/10.1039/b705461k
|
110 |
D Lu, R Tao, Z Wang. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323
https://doi.org/10.1007/s11705-018-1750-7
|
111 |
Á Juarranz, P Jaén, F Sanz-Rodríguez, J Cuevas, S González. Photodynamic therapy of cancer. Basic principles and applications. Clinical & Translational Oncology, 2008, 10(3): 148–154
https://doi.org/10.1007/s12094-008-0172-2
|
112 |
B W Henderson, T J Dougherty. How does photodynamic therapy work? Photochemistry and Photobiology, 1992, 55(1): 145–157
https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
|
113 |
A P Castano, T N Demidova, M R Hamblin. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 279–293
https://doi.org/10.1016/S1572-1000(05)00007-4
|
114 |
D Xu, Y You, F Zeng, Y Wang, C Liang, H Feng, X Ma. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(18): 15517–15523
https://doi.org/10.1021/acsami.8b03831
|
115 |
Z Xie, S Liang, X Cai, B Ding, S Huang, Z Hou, P Ma, Z Cheng, J Lin. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Applied Materials & Interfaces, 2019, 11(35): 31671–31680
https://doi.org/10.1021/acsami.9b10685
|
116 |
C Zhang, W Bu, D Ni, S Zhang, Q Li, Z Yao, J Zhang, H Yao, Z Wang, J Shi. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106
https://doi.org/10.1002/anie.201510031
|
117 |
Z Tang, Y Liu, M He, W Bu. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956
https://doi.org/10.1002/anie.201805664
|
118 |
L S Lin, J Song, L Song, K Ke, Y Liu, Z Zhou, Z Shen, J Li, Z Yang, W Tang, G Niu, H H Yang, X Chen. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906
https://doi.org/10.1002/anie.201712027
|
119 |
B Ma, S Wang, F Liu, S Zhang, J Duan, Z Li, Y Kong, Y Sang, H Liu, W Bu, L Li. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857
https://doi.org/10.1021/jacs.8b08714
|
120 |
Y Chen, J Deng, F Liu, P Dai, Y An, Z Wang, Y Zhao. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366
https://doi.org/10.1002/adhm.201900366
|
121 |
B Leader, Q J Baca, D E Golan. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39
https://doi.org/10.1038/nrd2399
|
122 |
Z Chen, N Li, S Li, M Dharmarwardana, A Schlimme, J J Gassensmith. Viral chemistry: The chemical functionalization of viral architectures to create new technology. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2016, 8(4): 512–534
https://doi.org/10.1002/wnan.1379
|
123 |
F Mallamace, C Corsaro, D Mallamace, S Vasi, C Vasi, P Baglioni, S V Buldyrev, S H Chen, H E Stanley. Energy landscape in protein folding and unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3159–3163
https://doi.org/10.1073/pnas.1524864113
|
124 |
S P Carmichael, M S Shell. Entropic (de)stabilization of surface-bound peptides conjugated with polymers. Journal of Chemical Physics, 2015, 143(24): 243103
https://doi.org/10.1063/1.4929592
|
125 |
C Wang, J Luan, S Tadepalli, K K Liu, J J Morrissey, E D Kharasch, R R Naik, S Singamaneni. Silk-encapsulated plasmonic biochips with enhanced thermal stability. ACS Applied Materials & Interfaces, 2016, 8(40): 26493–26500
https://doi.org/10.1021/acsami.6b07362
|
126 |
K Liang, R Ricco, C M Doherty, M J Styles, S Bell, N Kirby, S Mudie, D Haylock, A J Hill, C J Doonan, P Falcaro. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6(1): 7240
https://doi.org/10.1038/ncomms8240
|
127 |
S K Alsaiari, S Patil, M Alyami, K O Alamoudi, F A Aleisa, J S Merzaban, M Li, N M Khashab. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society, 2018, 140(1): 143–146
https://doi.org/10.1021/jacs.7b11754
|
128 |
J Wang, Y Ye, J Yu, A R Kahkoska, X Zhang, C Wang, W Sun, R D Corder, Z Chen, S A Khan, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466–2473
https://doi.org/10.1021/acsnano.7b08152
|
129 |
J Yang, Z Cao. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. Journal of Controlled Release, 2017, 263: 231–239
https://doi.org/10.1016/j.jconrel.2017.01.043
|
130 |
J Yu, Y Zhang, Y Ye, R DiSanto, W Sun, D Ranson, F S Ligler, J B Buse, Z Gu. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8260–8265
https://doi.org/10.1073/pnas.1505405112
|
131 |
W H Chen, G F Luo, M Vazquez-Gonzalez, R Cazelles, Y S Sohn, R Nechushtai, Y Mandel, I Willner. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano, 2018, 12(8): 7538–7545
https://doi.org/10.1021/acsnano.8b03417
|
132 |
R I Weed, C F Reed, G Berg. Is hemoglobin an essential structural component of human erythrocyte membranes? Journal of Clinical Investigation, 1963, 42(4): 581–588
https://doi.org/10.1172/JCI104747
|
133 |
H Ranji-Burachaloo, A Reyhani, P A Gurr, D E Dunstan, G G Qiao. Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale, 2019, 11(12): 5705–5716
https://doi.org/10.1039/C8NR09107B
|
134 |
P Mali, L Yang, K M Esvelt, J Aach, M Guell, J E DiCarlo, J E Norville, G M Church. Rna-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
https://doi.org/10.1126/science.1232033
|
135 |
L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143
|
136 |
M Li, Y Tao, Y Shu, J R LaRochelle, A Steinauer, D Thompson, A Schepartz, Z Y Chen, D R Liu. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. Journal of the American Chemical Society, 2015, 137(44): 14084–14093
https://doi.org/10.1021/jacs.5b05694
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|