| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach  | 
  					 
  					  										
						Yunrui Tian1, Haishun Du2, Shatila Sarwar2, Wenjie Dong1, Yayun Zheng1, Shumin Wang1, Qingping Guo1, Jujie Luo1( ), Xinyu Zhang2( ) | 
					 
															
						1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2. Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  We present a one-step route for the preparation of nickel phosphide/carbon nanotube (Ni2P@CNT) nanocomposites for supercapacitor applications using a facile, ultrafast (90 s) microwave-based approach. Ni2P nanoparticles could grow uniformly on the surface of CNTs under the optimized reaction conditions, namely, a feeding ratio of 30:50:25 for CNT, Ni(NO3)2·6H2O, and red phosphorus and a microwave power of 1000 W for 90 s. Our study demonstrated that the single-step microwave synthesis process for creating metal phosphide nanoparticles was faster and simpler than all the other existing methods. Electrochemical results showed that the specific capacitance of the optimal Ni2P@CNT-nanocomposite electrode displayed a high specific capacitance of 854 F·g−1 at 1 A·g−1 and a superior capacitance retention of 84% after 5000 cycles at 10 A·g−1. Finally, an asymmetric supercapacitor was assembled using the nanocomposite with activated carbon as one electrode (Ni2P@CNT//AC), which showed a remarkable energy density of 33.5 W·h·kg−1 and a power density of 387.5 W·kg−1. This work will pave the way for the microwave synthesis of other transition metal phosphide materials for use in energy storage systems. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				Ni2P  
																		  																																				CNT  
																		  																																				supercapacitors  
																		  																																				nanocomposites  
																		  																																				microwave  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Jujie Luo,Xinyu Zhang   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 30 October 2020  
																																														Online First Date: 15 December 2020   
																																														Issue Date: 04 June 2021
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      S Y Kong, K Cheng, T Ouyang, Y Y Gao, K Ye, G L Wang, D X Cao. Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochimica Acta, 2017, 226: 29–39
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2016.12.158
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      N Zhang, Y H Ding, J Y Zhang, B Fu, X L Zhang, X F Zheng, Y Z Fang. Construction of MnO2 nanowires@Ni1−xCoxOy nanoflake core-shell heterostructure for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 694: 1302–1308
														     														     	 
														     															     		https://doi.org/10.1016/j.jallcom.2016.10.072
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      Y J Li, W Ou-Yang, X T Xu, M Wang, S J Hou, T Lu, Y F Yao, L K Pan. Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271: 591–598
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2018.03.199
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      Y J Li, G Zhu, H L Huang, M Xu, T Lu, L K. A N Pan, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(15): 9040–9050
														     														     	 
														     															     		https://doi.org/10.1039/C8TA12246F
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      X T Xu, Y Liu, M Wang, C Zhu, T Lu, R Zhao, L K Pan. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta, 2016, 193: 88–95
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2016.02.049
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      Z Liu, L Zhang, R G Wang, S Poyraz, J Cook, M J Bozack, S Das, X Y Zhang, L B Hu. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Scientific Reports, 2016, 6(1): 22503
														     														     	 
														     															     		https://doi.org/10.1038/srep22503
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      Z Lu, Z Chang, W Zhu, X Sun. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications, 2011, 47(34): 9651
														     														     	 
														     															     		https://doi.org/10.1039/c1cc13796d
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      J Xie, X Sun, N Zhang, K Xu, M Zhou, Y Xie. Layer-by-layer beta-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013, 2(1): 65–74
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2012.07.016
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      A Muzaffar, M B Ahamed, K Deshmukh, J Thirumalai. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable & Sustainable Energy Reviews, 2019, 101: 123–145
														     														     	 
														     															     		https://doi.org/10.1016/j.rser.2018.10.026
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      Q Zhang, E Uchaker, S L Candelaria, G Cao. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42(7): 3127–3171
														     														     	 
														     															     		https://doi.org/10.1039/c3cs00009e
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      Y Wang, Y Song, Y Xia. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950
														     														     	 
														     															     		https://doi.org/10.1039/C5CS00580A
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      N S Arul, J I Han. Enhanced pseudocapacitance of NiSe2/Ni(OH)2 nanocomposites for supercapacitor electrode. Materials Letters, 2019, 234: 87–91
														     														     	 
														     															     		https://doi.org/10.1016/j.matlet.2018.09.064
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      Z Yu, L Tetard, L Zhai, J Thomas. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
														     														     	 
														     															     		https://doi.org/10.1039/C4EE03229B
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      N Zhang, Y F Li, J Y Xu, J J Li, B Wei, Y Ding, I Arnorim, R Thomas, S M Thalluri, Y Y Liu, et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano, 2019, 13(9): 10612–10621
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.9b04810
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      H C Chen, S P Jiang, B H Xu, C H Huang, Y Z Hu, Y L Qin, M X He, H J Cao. Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6241–6249
														     														     	 
														     															     		https://doi.org/10.1039/C8TA11189H
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      A Panneerselvam, M A Malik, M Afzaal, P O’Brien, M Helliwell. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. Journal of the American Chemical Society, 2008, 130(8): 2420–2421
														     														     	 
														     															     		https://doi.org/10.1021/ja078202j
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      X Li, A M Elshahawy, C Guan, J Wang. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 2017, 13(39): 1701530
														     														     	 
														     															     		https://doi.org/10.1002/smll.201701530
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      H Pang, C Wei, Y Ma, S Zhao, G Li, J Zhang, J Chen, S Li. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 2013, 78(6): 546–553
														     														     	 
														     															     		https://doi.org/10.1002/cplu.201300015
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      Y Zhao, M Zhao, X Ding, Z R Liu, H Tian, H H Shen, X T Zu, S A Li, L Qiao. One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 373: 1132–1143
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2019.05.098
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      S J Hou, X T Xu, M Wang, Y Q Xu, T Lu, Y F Yao, L K Pan. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(369): 19054–19061
														     														     	 
														     															     		https://doi.org/10.1039/C7TA04720G
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      H Jiang, T Zhao, C Li, J Ma. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry, 2011, 21(11): 3818–3823
														     														     	 
														     															     		https://doi.org/10.1039/c0jm03830j
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      M C Liu, L B Kong, L Kang, X Li, F C Walsh, M Xing, C Lu, X J Ma, Y C Luo. Synthesis and characterization of M3V2O8 (M= Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(14): 4919–4926
														     														     	 
														     															     		https://doi.org/10.1039/c4ta00582a
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      Y L Shih, C L Wu, T Y Wu, D H Chen. Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors. Nanotechnology, 2019, 30(11): 115601
														     														     	 
														     															     		https://doi.org/10.1088/1361-6528/aaf8fc
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      Z J Lv, Q Zhong, Y F Bu. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Applied Surface Science, 2018, 439: 413–419
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2017.12.185
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      X Zhang, M M Han, G Q Liu, G Z Wang, Y X Zhang, H M Zhang, H J Zhao. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Applied Catalysis B: Environmental, 2019, 244: 899–908
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2018.12.025
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      J Wang, F Ciucci. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 254: 292–299
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2019.05.009
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      Y Lin, J Zhang, Y Pan, Y Q Liu. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Applied Surface Science, 2017, 422: 828–837
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2017.06.102
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      J Y Xu, J J Li, D H Xiong, B S Zhang, Y F Liu, K H Wu, I Amorim, W Li, L F Liu. Trends in activity for the oxygen evolution reaction on transition metal (M= Fe, Co, Ni) phosphide precatalysts. Chemical Science (Cambridge), 2018, 9(14): 3470–3476
														     														     	 
														     															     		https://doi.org/10.1039/C7SC05033J
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      Y F Huang, P T Chiueh, W H Kuan, S L Lo. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy, 2016, 100: 137–144
														     														     	 
														     															     		https://doi.org/10.1016/j.energy.2016.01.088
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      J Y Dong, G Lu, J S Yue, Z M Cheng, X H Kang. Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor. Applied Surface Science, 2019, 480: 1116–1125
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2019.02.245
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      S Poyraz, L Zhang, A Schroder, X Y Zhang. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Applied Materials & Interfaces, 2015, 7(40): 22469–22477
														     														     	 
														     															     		https://doi.org/10.1021/acsami.5b06484
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      Y R Tian, H S Du, M M Zhang, Y Y Zheng, Q P Guo, H P Zhang, J J Luo, X Y Zhang. Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycle stability for supercapacitor electrodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(31): 9545–9555
														     														     	 
														     															     		https://doi.org/10.1039/C9TC02391G
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      J Low, J Yu, M Jaroniec, S Wageh, A A Al-Ghamdi. Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694
														     														     	 
														     															     		https://doi.org/10.1002/adma.201601694
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      Z J Wang, Z L Jin, H Yuan, G R Wang, B Z Ma. Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018, 532: 287–299
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2018.07.138
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      S L Xie, J X Gou. Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. Journal of Alloys and Compounds, 2017, 713: 10–13
														     														     	 
														     															     		https://doi.org/10.1016/j.jallcom.2017.04.170
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      M G Hosseini, E Shahryari. Synthesis. Characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. Journal of Materials Science and Technology, 2016, 32(8): 763–773
														     														     	 
														     															     		https://doi.org/10.1016/j.jmst.2016.05.008
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      H M Ghasem, S Elham. Anchoring RuO2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor. Ionics, 2019, 25(5): 2383–2391
														     														     	 
														     															     		https://doi.org/10.1007/s11581-018-2668-2
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      X Yang, Y R Tian, S Sarwar, M M Zhang, H P Zhang, J J Luo, X Y Zhang. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochimica Acta, 2019, 311: 230–243
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2019.04.084
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      Y H Bi, A Nautiyal, H P Zhang, J J Luo, X Y Zhang. One-pot microwave synthesis of NiO/MnO2 composite as a high performance electrode material for supercapacitors. Electrochimica Acta, 2017, 260: 952–928
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2017.12.074
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      G Z Zhao, Y J Li, G Zhu, J Y Shi, T Lu, L K Pan. Biomass-based N, P, and S self-doped porous carbon for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12052–12060
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.9b00725
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      L Han, H L Huang, J F Li, Z L Yang, X L Zhang, D F Zhang, X J Liu, M Xu, L K Pan. Novel zinc-iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(42): 24400–24407
														     														     	 
														     															     		https://doi.org/10.1039/C9TA07196B
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      P Lou, Z Cui, Z Jia, J Sun, Y Tan, X Guo. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano, 2017, 11(4): 3705–3715
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.6b08223
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      L Sun, Y Zhang, D Y Zhang, Y H Zhang. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9(46): 18552–18560
														     														     	 
														     															     		https://doi.org/10.1039/C7NR06476D
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      L Chen, H Bai, Z Huang, L Li. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy & Environmental Science, 2014, 7(5): 1750–1759
														     														     	 
														     															     		https://doi.org/10.1039/C4EE00002A
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      F Barzegar, A A Khaleed, F U Ugbo, K O Oyeniran, D Y Momodu, A Bello, J K Dangbegnon, N Manyala. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AIP Advances, 2016, 6(11): 115306
														     														     	 
														     															     		https://doi.org/10.1063/1.4967348
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      C H An, Y J Wang, L Li, F Y Qiu, Y N Xu, C C Xu, Y N Huang, F Jiao, H T Yuan. Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials. Electrochimica Acta, 2014, 133: 180–187
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2014.04.056
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      Y L Ding, H Alias, D S Wen, R A Williams. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006, 49(1): 240–250
														     														     	 
														     															     		https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      C Wu, P Kopold, P A van Aken, J Maier, Y Yu. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Advanced Materials, 2017, 29(3): 1604015
														     														     	 
														     															     		https://doi.org/10.1002/adma.201604015
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      Y Lu, J P Tu, Q Q Xiong, J Y Xiang, Y J Mai, J Zhang, Y Q Qiao, X L Wang, C D Gu, S X Mao. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Advanced Functional Materials, 2012, 22(18): 3927–3935
														     														     	 
														     															     		https://doi.org/10.1002/adfm.201102660
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      Z X Guang, Y Huang, X F Chen, X Sun, M Y Wang, X S Feng, C Chen, X D Liu. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 307: 260–268
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2019.03.190
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														      X Chen, M Cheng, D Chen, R Wang. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3892–3900
														     														     	 
														     															     		https://doi.org/10.1021/acsami.5b10785
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														      G Qu, J Cheng, X Li, D Yuan, P Chen, X Chen, B Wang, H Peng. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Advanced Materials, 2016, 28(19): 3646–3652
														     														     	 
														     															     		https://doi.org/10.1002/adma.201600689
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														      Y Y Lan, H Y Zhao, Y Zong, X H Li, Y Sun, J Feng, Y Wang, X T Zheng, Y P Du. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10(25): 11775–11781
														     														     	 
														     															     		https://doi.org/10.1039/C8NR01229F
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														      D Wang, L B Kong, M C Liu, Y C Luo, L Kang. An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(49): 17897–17903
														     														     	 
														     															     		https://doi.org/10.1002/chem.201502269
														     															     															     															 | 
																  
																														
															| 55 | 
															 
														      F Ochai-Ejeh, M J Madito, K Makgopa, M N Rantho, O Olaniyan, N Manyala. Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. Electrochimica Acta, 2018, 289: 363–375
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2018.09.032
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |