Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (5) : 1050-1074    https://doi.org/10.1007/s11705-020-2025-7
REVIEW ARTICLE
Dehydration of natural gas and biogas streams using solid desiccants: a review
Soheil Bahraminia, Mansoor Anbia(), Esmat Koohsaryan
Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
 Download: PDF(4832 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Natural gas and biogas are two mixtures that consist of methane as their main component. These two gas mixtures are usually saturated with water vapor, which cause many problems, such as damaging the gas processing equipment by increasing the gas’s corrosion potential or clogging the pipelines due to gas hydrate formation. Thus, removing water vapor from these gas streams is mandatory. In this review paper, the main dehydration methods have been overviewed, and scrutiny of the adsorption dehydration has been carried out. Furthermore, the most important solid desiccants and their improvements have been reviewed.

Keywords natural gas      biogas      dehydration      adsorption      solid desiccant     
Corresponding Author(s): Mansoor Anbia   
Just Accepted Date: 30 January 2021   Online First Date: 12 March 2021    Issue Date: 30 August 2021
 Cite this article:   
Soheil Bahraminia,Mansoor Anbia,Esmat Koohsaryan. Dehydration of natural gas and biogas streams using solid desiccants: a review[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1050-1074.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2025-7
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I5/1050
Fig.1  The steps involved in anaerobic digestion. Reprinted with permission from Ref. [7], copyright 2020 Elsevier.
Constituents Composition/vol-%
Wet Dry
Hydrocarbons
CH4 84.6 96.00
C2H6 6.4 2.00
C3H8 5.3 0.60
Isobutene 1.2 0.18
n-Butene 1.4 0.12
Isopentane 0.4 0.14
n-Pentane 0.2 0.06
Hexanes 0.4 0.10
Heptane 0.1 0.80
Non-hydrocarbons
CO2 ≤5
He ≤0.5
H2S ≤5
N2 ≤10
Ar ≤0.05
Rn, Kr, Xe Traces
Tab.1  General composition of wet and dry NG [2]
Component CO2/vol-% H2S/vol-% NH3/vol-% H2O/vol-% Dust/mm N2/vol-% Siloxanes
/(mg·m–3)
Content 25–50 0–0.5 0–0.5 1–5 ? 5 0–5 0–50
Tab.2  Typical components and impurities in biogas [8]
Application Components
H2S CO2 H2O Traces
Gas heater (boiler) ? 1394 mg·m−3 No No Yes (e.g., siloxanes)
CHP ? 1394 mg·m−3 No Avoid condensation Yes (e.g., siloxanes)
Vehicle fuel Yes Yes Yes Yes
Gas grid Yes Yes Yes Yes
Tab.3  Values are required for different components of biogas, according to the application [8]
Fig.2  (a) General sequence for NG purification processes; (b) the various unit operation in biogas upgrading from the fermenter to the NG grid.
Fig.3  The three conventional gas hydrate structures with the assembling of unit cells. Reprinted with permission from Ref. [27], copyright 2019 Elsevier.
Fig.4  (a) The structure of water methane hydrate. Reprinted with permission from Ref. [28], copyright 2011 Elsevier; (b) Thermodynamic conditions for hydrate formation. Reprinted with permission from Ref. [15], copyright 2015 Elsevier.
Fig.5  (a) Hydrate formation in outlet filters and baffles of cold-separator. Reprinted with permission from Ref. [13], copyright 2013 Elsevier; (b) Damage of gas pipeline caused by hydrate plug movement. Reprinted with permission from Ref. [15], copyright 2015 Elsevier.
Fig.6  Conventional TEG dehydration unit. Reprinted with permission from Ref. [1], copyright 2013 Elsevier.
Fig.7  A schematic CaCl2 gas dehydration system. Reprinted with permission from Ref. [40], copyright 2014 Elsevier.
Fig.8  Three adsorption zones in a solid desiccant adsorption bed. Reprinted with permission from Ref. [28], copyright 2011 Elsevier.
Fig.9  The flow diagram of an adsorption dehydration unit. Reprinted with permission from Ref. [30], copyright 2015 Elsevier.
Fig.10  An industrial TSA system, including two beds. Reprinted with permission from Ref. [41], copyright 2018 Elsevier.
Fig.11  Typical temperature courses for 12 h TSA regeneration of molecular sieves. Reprinted with permission from Ref. [31], copyright 2012 IntechOpen.
Phase Steps Time/h
Adsorption 12
Regeneration 12
Heating Gradual heating (0.5 h)
Ramp up heating (0.5 h)
Heating (4.5 h heating+ 0.5 h spare heating)
Cooling Cooling (2 h)
Stand by Hot stand (1 h)
Cooling stand by (3 h)
Tab.4  The adsorption and regeneration phase duration of a drying unit, including four beds [42]
Fig.12  IUPAC classification of isotherm types. Reprinted with permission from Ref. [53], copyright 2014 Elsevier.
Fig.13  Three basic types of surface silanol (hydroxyl) groups. Reprinted with permission from Ref. [54], copyright 2003 John Wiley and Sons.
Fig.14  Water adsorption isotherms of SG and SG-based composite desiccants. Reprinted with permission from Ref. [53], copyright 2014 Elsevier.
Adsorbent a) Adsorption capacity/(g·g–1) Refs.
SG 127 B 0.11 [63]
SG (Solvay) 0.18 [64]
Silica aerogel 1.35 [65]
SG type A 0.40 [66]
SG type RD 0.45 [66]
SG/CaCl2 0.80 [67]
SG/CaCl2 0.60 [68]
SG type C 0.09 [53,69]
SG/Li10 0.47 [53,69]
SG/Li20 0.72 [53,69]
SG/Li30 0.90 [53,69]
SG/Li40 1.20 [53,69]
SG wheel 0.23 [70]
SG/LiCl 0.67 [53,70]
SG/Ca (NO3)2 0.21 [53,57]
SG/LiNO3 0.22 [53,71]
SG-Meso-A/50 CaCl2 0.42 [59]
Mesoporous SG 0.06 [53,72]
SG/LiBr-17% 0.22 [53,72]
SG/MgCl2-17% 0.20 [53,72]
SG/CaCl2-17% 0.33 [53,72]
SG/CaCl2-26% 0.31 [53,72]
SG/CaCl2-33% 0.28 [53,72]
SG/Na2SO4 0.85 [53,62]
SG/CaCl2-33.7% 0.42 [73]
SG type A 0.25 [74]
Mesoporous SG 0.35 [53,75]
SG-Meso-B/50 CaCl2 0.47 [75]
SG/Meso/50 CaCl2 0.28 [75]
SG/MgSO4 0.40 [60]
SG/LiBr 0.93 [76]
SG/CaCl2 1.2 [61]
SG/CaCl2 1.1 [61]
SG/Na2SO4 0.85 [77]
Tab.5  Water adsorption capacities and surface areas of different kinds of SG and various SG-based composites
Fig.15  Zeolite formation in a hydrogel system investigated by transmission electron microscopy: (a) nucleation at the gel-liquid interface; (b) growth and liberation of zeolite nuclei from the gel matrix; (c) growth in parent liquor, and (d) final fully crystalline zeolite product. Reprinted with permission from Ref. [85], copyright 2013 American Chemical Society.
Fig.16  (a) Main parameters governing zeolite synthesis. Reprinted with permission from Ref. [86], copyright 2014 Elsevier; (b) Stages of Na-zeolite phase transformation with increasing synthesis time and temperature proportional to Ostwald’s rule of stages wherein metastable structures progressively transform to more thermodynamically stable ones. Reprinted with permission from Ref. [87], copyright 2013 American Chemical Society.
Fig.17  Correlation for molecular sieving of molecules (with kinetic diameter s) in various zeolites with different effective pore sizes at the temperature of 77 K (solid lines) and 240 K (dotted lines). Reprinted with permission from Ref. [54], copyright 2003 John Wiley and Sons.
Fig.18  (a) Sodalite or beta cage; (b) the most likely cation sites of the type A zeolite; (c) the most likely sites of the type FAU framework. Reprinted with permission from Ref. [54], copyright 2003 John Wiley and Sons.
Fig.19  SEM image of knobby surfaced microspheres of NaP1 (P7) zeolite, its water vapor adsorption isotherm, and framework. Reprinted with permission from Ref. [91], copyright 2016 Springer Nature.
Adsorbent Adsorption capacity
/(g·g–1)
Ref. Adsorbent Adsorption capacity/(g·g–1) Ref.
CaNaA 0.16 [110] NaA 0.29 [111]
MgA 0.42 [111] NaA 0.09 [63]
LiA 0.10 [63] 3A 0.21 [53]
3A 0.25 [91] 4A 0.25 [91]
5A 0.25 [91] LTASS 0.26 [91]
3A 0.24 [89] 3A 0.08 [112]
5A 0.25 [113] 13X 0.26 [114]
13X 0.34 [89] 13X 0.18 [90]
13X 0.26 [113] 13X 0.23 [115]
NaX 0.33 [116] KX 0.26 [116]
RbX 0.20 [116] CsX (5) 0.27 [116]
CsX (30) 0.22 [116] CsX (45) 0.19 [116]
NaX 0.34 [111] MgX 0.45 [111]
LiNaX 0.38 [117] 13X 0.33 [118]
13X 0.20 [74] NaX 0.32 [91]
Sr-ex 13X 0.25 [90] Zn-ex 13X 0.25 [90]
Cd-ex 13X 0.21 [90] Zeolite X/activated carbon composite 0.21 [114]
Alumina/zeolite 13X composite 0.38 [119] Dealuminated Y 0.22 [89]
CaY 0.34 [110] HY 0.20 [110]
KY 0.29 [110] LiY 0.36 [110]
RbY 0.34 [110] NaY 0.34 [111]
MgY 0.42 [111] PbY 0.15 [63]
NiY 0.15 [63] NaY 0.15 [63]
NaY 0.33 [91] LiY 0.19 [63]
LaNaY 0.19 [63] KP 0.12 [110]
NaP 0.24 [110] CaP 0.22 [110]
P1 0.34 [91] P2 0.42 [91]
P3 0.43 [91] P4 0.97 [91]
P5 0.64 [91] P6 1.30 [91]
P7 1.39 [91] A1-6.7 0.55 [75]
A2-7.7 0.53 [75] A3-8.7 0.46 [75]
Clinoptilolite 0.05 [90] Sr-ex clinoptilolite 0.10 [90]
Zn-ex clinoptilolite 0.11 [90] Cd-ex clinoptilolite 0.10 [90]
Tab.6  Water adsorption capacities of different kinds of zeolites along with their ion-exchanged types
Fig.20  Typical isotherms of activated alumina, SG, and molecular sieve. Reprinted with permission from Ref. [30], copyright 2015 Elsevier.
Fig.21  Gas dehydration method selection. Reprinted with permission from Ref. [30], copyright 2015 Elsevier.
1 M R Rahimpour, S M Jokar, P Feyzi, R Asghari. Investigating the performance of dehydration unit with Coldfinger technology in gas processing plant. Journal of Natural Gas Science and Engineering, 2013, 12: 1–12
https://doi.org/10.1016/j.jngse.2013.01.001
2 S Faramawy, T Zaki, A E Sakr. Natural gas origin, composition, and processing: a review. Journal of Natural Gas Science and Engineering, 2016, 34: 34–54
https://doi.org/10.1016/j.jngse.2016.06.030
3 Z Y Kong, A Mahmoud, S Liu, J Sunarso. Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency: available methods and recent developments. Journal of Natural Gas Science and Engineering, 2018, 56: 486–503
https://doi.org/10.1016/j.jngse.2018.06.008
4 Y Alcheikhhamdon, M Hoorfar. Natural gas quality enhancement: a review of the conventional treatment processes, and the industrial challenges facing emerging technologies. Journal of Natural Gas Science and Engineering, 2016, 34: 689–701
https://doi.org/10.1016/j.jngse.2016.07.034
5 T Abbasi, S Tauseef, S Abbasi. Biogas and Biogas Energy: An Introduction. Vol. 2. New York: Springer, 2012, 1–10.
6 L Appels, J Baeyens, J Degrève, R Dewil. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781
https://doi.org/10.1016/j.pecs.2008.06.002
7 S Bahraminia, M Anbia, E Koohsaryan. Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45(55): 31027–31040
https://doi.org/10.1016/j.ijhydene.2020.08.091
8 D Deublein, A Steinhauser. Biogas from Waste and Renewable Resources: An Introduction. 1st ed. New Jersey: John Wiley & Sons, 2008, 49–56
9 X Zhu, D Xu, J K Wang. Contributions in renewable energy systems: a perspective from the latest publications of FCSE. Frontiers of Chemical Science and Engineering, 2019, 13(4): 632–635
https://doi.org/10.1007/s11705-019-1904-2
10 M Spitoni, M Pierantozzi, G Comodi, F Polonara, A Arteconi. Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas. Journal of Natural Gas Science and Engineering, 2019, 62: 132–143
https://doi.org/10.1016/j.jngse.2018.12.007
11 M Scholz, T Melin, M Wessling. Transforming biogas into biomethane using membrane technology. Renewable & Sustainable Energy Reviews, 2013, 17: 199–212
https://doi.org/10.1016/j.rser.2012.08.009
12 G Gonfa, M A Bustam, A M Sharif, N Mohamad, S Ullah. Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology. Journal of Natural Gas Science and Engineering, 2015, 27: 1141–1148
https://doi.org/10.1016/j.jngse.2015.09.062
13 M Rahimpour, M Saidi, M Seifi. Improvement of natural gas dehydration performance by optimization of operating conditions: a case study in Sarkhun gas processing plant. Journal of Natural Gas Science and Engineering, 2013, 15: 118–126
https://doi.org/10.1016/j.jngse.2013.10.001
14 A N Rouzbahani, M Bahmani, J Shariati, T Tohidian, M Rahimpour. Simulation, optimization, and sensitivity analysis of a natural gas dehydration unit. Journal of Natural Gas Science and Engineering, 2014, 21: 159–169
https://doi.org/10.1016/j.jngse.2014.07.025
15 F Caputo, F Cascetta, G Lamanna, G Rotondo, A Soprano. Estimation of the damage in a natural gas flow line caused by the motion of methane hydrates. Journal of Natural Gas Science and Engineering, 2015, 26: 1222–1231
https://doi.org/10.1016/j.jngse.2015.07.050
16 T V Løkken. Comparison of hygrometers for monitoring of water vapour in natural gas. Journal of Natural Gas Science and Engineering, 2012, 6: 24–36
https://doi.org/10.1016/j.jngse.2012.02.001
17 T Løkken. Water vapour monitoring in natural gas in the presence of methanol. Journal of Natural Gas Science and Engineering, 2012, 7: 7–15
https://doi.org/10.1016/j.jngse.2012.03.005
18 T Løkken. Water vapour measurements in natural gas in the presence of ethylene glycol. Journal of Natural Gas Science and Engineering, 2013, 12: 13–21
https://doi.org/10.1016/j.jngse.2013.01.002
19 F A Medeiros, F M Shiguematsu, F B Campos, I S V Segtovich, J E S Ourique, A G Barreto Jr, F W Tavares. Alternative EoS-based model for predicting water content, metastable phases and hydrate formation in natural gas systems. Journal of Natural Gas Science and Engineering, 2016, 36: 550–562
https://doi.org/10.1016/j.jngse.2016.10.058
20 S A Aromada, B Kvamme. New approach for evaluating the risk of hydrate formation during transport of hydrocarbon hydrate formers of sI and sII. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(3): 1097–1110
https://doi.org/10.1002/aic.16493
21 B Kvamme, S A Aromada. Risk of hydrate formation during the processing and transport of Troll gas from the North Sea. Journal of Chemical & Engineering Data, 2017, 62(7): 2163–2177
https://doi.org/10.1021/acs.jced.7b00256
22 B Kvamme, T Kuznetsova, J M Bauman, S Sjöblom, A Avinash Kulkarni. Hydrate formation during transport of natural gas containing water and impurities. Journal of Chemical & Engineering Data, 2016, 61(2): 936–949
https://doi.org/10.1021/acs.jced.5b00787
23 M Neagu, D L Cursaru. Technical and economic evaluations of the triethylene glycol regeneration processes in natural gas dehydration plants. Journal of Natural Gas Science and Engineering, 2017, 37: 327–340
https://doi.org/10.1016/j.jngse.2016.11.052
24 S A Aromada, B Kvamme. Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas. Frontiers of Chemical Science and Engineering, 2019, 13(3): 616–627
https://doi.org/10.1007/s11705-019-1795-2
25 Z Taheri, M R Shabani, K Nazari, A Mehdizaheh. Natural gas transportation and storage by hydrate technology: iran case study. Journal of Natural Gas Science and Engineering, 2014, 21: 846–849
https://doi.org/10.1016/j.jngse.2014.09.026
26 Z Long, X Zhou, Y He, D Li, D Liang. Performance of mixture of ethylene glycol and glycine in inhibiting methane hydrate formation. Journal of Natural Gas Science and Engineering, 2018, 56: 134–140
https://doi.org/10.1016/j.jngse.2018.05.034
27 W Ke, T M Svartaas, D Chen. A review of gas hydrate nucleation theories and growth models. Journal of Natural Gas Science and Engineering, 2019, 61: 169–196
https://doi.org/10.1016/j.jngse.2018.10.021
28 H A Farag, M M Ezzat, H Amer, A W Nashed. Natural gas dehydration by desiccant materials. Alexandria Engineering Journal, 2011, 50(4): 431–439
https://doi.org/10.1016/j.aej.2011.01.020
29 C Koh, R E Westacott, W Zhang, K Hirachand, J Creek, A Soper. Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 2002, 194: 143–151
https://doi.org/10.1016/S0378-3812(01)00660-4
30 S Mokhatab, W A Poe, J Mak. Handbook of Natural Gas Transmission and Processing. 3rd ed. Houston: Gulf Professional Publishing, 2015, 223–263
31 M Netusil, P Ditl. Natural Gas—Extraction to End Use. London: IntechOpen, 2012, 3–22
32 H Ranjbar, H Ahmadi, R K Sheshdeh, H Ranjbar. Application of relative sensitivity function in parametric optimization of a tri-ethylene glycol dehydration plant. Journal of Natural Gas Science and Engineering, 2015, 25: 39–45
https://doi.org/10.1016/j.jngse.2015.04.028
33 A Bahadori, H B Vuthaluru. Rapid estimation of equilibrium water dew point of natural gas in TEG dehydration systems. Journal of Natural Gas Science and Engineering, 2009, 1(3): 68–71
https://doi.org/10.1016/j.jngse.2009.08.001
34 J Carroll. Natural Gas Hydrates: A Guide for Engineers. 2nd ed. Houston: Gulf Professional Publishing, 2009, 151–169
35 A Bahadori, H B Vuthaluru. Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems. Energy, 2009, 34(11): 1910–1916
https://doi.org/10.1016/j.energy.2009.07.047
36 T Aissaoui, I M Al Nashef, Y Benguerba. Dehydration of natural gas using choline chloride based deep eutectic solvents: COSMO-RS prediction. Journal of Natural Gas Science and Engineering, 2016, 30: 571–577
https://doi.org/10.1016/j.jngse.2016.02.007
37 M Petryk, A Khimich, M Petryk, J Fraissard. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel, 2019, 239: 1324–1330
https://doi.org/10.1016/j.fuel.2018.10.134
38 V Rozyyev, C T Yavuz. An all-purpose porous cleaner for acid gas removal and dehydration of natural gas. Chem, 2017, 3(5): 719–721
https://doi.org/10.1016/j.chempr.2017.10.014
39 V Lavrenko, I Podchernyaeva, D Shchur, A D Zolotarenko, A D Zolotarenko. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metallurgy and Metal Ceramics, 2018, 56(9-10): 504–511
https://doi.org/10.1007/s11106-018-9922-z
40 M M Ghiasi, A Bahadori, S Zendehboudi. Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units. Fuel, 2014, 117: 33–42
https://doi.org/10.1016/j.fuel.2013.09.086
41 Y Yang, P Zhang, L Wang. Parametric analysis of thermal-pulse regeneration of activated alumina in temperature swing adsorption process used for gas dehydration. Applied Thermal Engineering, 2018, 141: 762–774
https://doi.org/10.1016/j.applthermaleng.2018.06.026
42 V Sreenivasan, S G Alladwar, K Noakes. Mitigate H2S spike in 4A molecular sieve gas dehydration. In: Abu Dhabi International Petroleum Exhibition & Conference. Richardson Society of Petroleum Engineers, 2019
43 C Shen, W Worek. Cosorption characteristics of solid adsorbents. International Journal of Heat and Mass Transfer, 1994, 37(14): 2123–2129
https://doi.org/10.1016/0017-9310(94)90313-1
44 A Gorbach, M Stegmaier, G Eigenberger. Measurement and modeling of water vapor adsorption on zeolite 4A—equilibria and kinetics. Adsorption, 2004, 10(1): 29–46
https://doi.org/10.1023/B:ADSO.0000024033.60103.ff
45 B Dawoud, U Vedder, E H Amer, S Dunne. Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2190–2199
https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.052
46 S Al-Asheh, F Banat, A A Fara. Dehydration of ethanol-water azeotropic mixture by adsorption through phillipsite packed-column. Separation Science and Technology, 2009, 44(13): 3170–3188
https://doi.org/10.1080/01496390903182479
47 J Nastaj, B Ambrożek. Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents. Chemical Engineering and Processing: Process Intensification, 2015, 96: 44–53
https://doi.org/10.1016/j.cep.2015.08.001
48 K Kim, M Lee, S Paek, S Yim, D Ahn, H Chung. Adsorption tests of water vapor on synthetic zeolites for an atmospheric detritiation dryer. Radiation Physics and Chemistry, 2007, 76(8-9): 1493–1496
https://doi.org/10.1016/j.radphyschem.2007.02.059
49 H Rezvani, S Fatemi. Influence of water vapor condensation inside nano-porous 4A adsorbent in adsorption-desorption cyclic process of natural gas dehydration. Separation Science and Technology, 2020, 55(7): 1286–1302
https://doi.org/10.1080/01496395.2019.1593455
50 C Li, W Jia, X Wu. Experimental failure-mechanism analysis of 4A zeolites used for natural-gas drying. Chemistry and Technology of Fuels and Oils, 2015, 51(3): 245–251
https://doi.org/10.1007/s10553-015-0598-5
51 F Štěpánek, M Kubíček, M Marek, M Šoóš, P Rajniak, R T Yang. On the modeling of PSA cycles with hysteresis-dependent isotherms. Chemical Engineering Science, 2000, 55(2): 431–440
https://doi.org/10.1016/S0009-2509(99)00338-3
52 H Ahn, C H Lee. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds. Chemical Engineering Science, 2004, 59(13): 2727–2743
https://doi.org/10.1016/j.ces.2004.04.011
53 X Zheng, T Ge, R Wang. Recent progress on desiccant materials for solid desiccant cooling systems. Energy, 2014, 74: 280–294
https://doi.org/10.1016/j.energy.2014.07.027
54 R T Yang. Adsorbents: Fundamentals and Applications. Hoboken: John Wiley & Sons, 2003, 157–190
55 X Zhang, L Qiu. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents. Energy Conversion and Management, 2007, 48(1): 320–326
https://doi.org/10.1016/j.enconman.2006.04.001
56 C Jia, Y Dai, J Wu, R Wang. Use of compound desiccant to develop high performance desiccant cooling system. International Journal of Refrigeration, 2007, 30(2): 345–353
https://doi.org/10.1016/j.ijrefrig.2006.04.001
57 I A Simonova, A Freni, G Restuccia, Y I Aristov. Water sorption on composite “silica modified by calcium nitrate”. Microporous and Mesoporous Materials, 2009, 122(1-3): 223–228
https://doi.org/10.1016/j.micromeso.2009.02.034
58 Y I Aristov, A Sapienza, D S Ovoshchnikov, A Freni, G Restuccia. Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. International Journal of Refrigeration, 2012, 35(3): 525–531
https://doi.org/10.1016/j.ijrefrig.2010.07.019
59 X Bu, L Wang, Y Huang. Effect of pore size on the performance of composite adsorbent. Adsorption, 2013, 19(5): 929–935
https://doi.org/10.1007/s10450-013-9513-8
60 L G Gordeeva, Y I Aristov, I S Glaznev. Sorption of water by sodium, copper, and magnesium sulfates dispersed into mesopores of silica gel and alumina. Russian Journal of Physical Chemistry A, 2003, 77(10): 1715–1720
61 J Mrowiec-Białoń, A B Jarzebski, A I Lachowski, J J Malinowski, Y I Aristov. Effective inorganic hybrid adsorbents of water vapor by the sol-gel method. Chemistry of Materials, 1997, 9(11): 2486–2490
https://doi.org/10.1021/cm9703280
62 K M Sukhyy, E A Belyanovskaya, Y N Kozlov, E V Kolomiyets, M P Sukhyy. Structure and adsorption properties of the composites ‘silica gel-sodium sulphate’, obtained by sol-gel method. Applied Thermal Engineering, 2014, 64(1-2): 408–412
https://doi.org/10.1016/j.applthermaleng.2013.12.013
63 S Henninger, F Schmidt, H M Henning. Water adsorption characteristics of novel materials for heat transformation applications. Applied Thermal Engineering, 2010, 30(13): 1692–1702
https://doi.org/10.1016/j.applthermaleng.2010.03.028
64 J Jänchen, D Ackermann, H Stach, W Brösicke. Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Solar Energy, 2004, 76(1-3): 339–344
https://doi.org/10.1016/j.solener.2003.07.036
65 Ž Knez, Z Novak. Adsorption of water vapor on silica, alumina, and their mixed oxide aerogels. Journal of Chemical & Engineering Data, 2001, 46(4): 858–860
https://doi.org/10.1021/je000201i
66 H T Chua, K C Ng, A Chakraborty, N M Oo, M A Othman. Adsorption characteristics of silica gel+ water systems. Journal of Chemical & Engineering Data, 2002, 47(5): 1177–1181
https://doi.org/10.1021/je0255067
67 E Levitskij, Y I Aristov, M Tokarev, V Parmon. “Chemical heat accumulators”: a new approach to accumulating low potential heat. Solar Energy Materials and Solar Cells, 1996, 44(3): 219–235
https://doi.org/10.1016/0927-0248(96)00010-4
68 L Gordeeva, M Tokarev, V Parmon, Y I Aristov. Selective water sorbents for multiple application, 6. Freshwater production from the atmosphere. Reaction Kinetics and Catalysis Letters, 1998, 65(1): 153–159
https://doi.org/10.1007/BF02475329
69 N Yu, R Wang, Z Lu, L Wang. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage. Chemical Engineering Science, 2014, 111: 73–84
https://doi.org/10.1016/j.ces.2014.02.012
70 C Jia, Y Dai, J Wu, R Wang. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Conversion and Management, 2006, 47(15-16): 2523–2534
https://doi.org/10.1016/j.enconman.2005.10.034
71 Y I Aristov, A Sapienza, D Ovoshchnikov, A Freni, G Restuccia. Reallocation of adsorption and desorption times for optimisation of cooling cycles. International Journal of Refrigeration, 2012, 35(3): 525–531
https://doi.org/10.1016/j.ijrefrig.2010.07.019
72 F B Cortés, F Chejne, F Carrasco Marín, A F Pérez Cadenas, C Moreno Castilla. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications. Energy Conversion and Management, 2012, 53(1): 219–223
https://doi.org/10.1016/j.enconman.2011.09.001
73 I Ponomarenko, I Glaznev, A Gubar, Y I Aristov, S Kirik. Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores”. Microporous and Mesoporous Materials, 2010, 129(1-2): 243–250
https://doi.org/10.1016/j.micromeso.2009.09.023
74 H J Chen, Q Cui, Y Tang, X J Chen, H Q Yao. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications. Applied Thermal Engineering, 2008, 28(17-18): 2187–2193
https://doi.org/10.1016/j.applthermaleng.2007.12.015
75 X Wei, W Wang, J Xiao, L Zhang, H Chen, J Ding. Hierarchically porous aluminosilicates as the water vapor adsorbents for dehumidification. Chemical Engineering Journal, 2013, 228: 1133–1139
https://doi.org/10.1016/j.cej.2013.05.062
76 L Gordeeva, G Restuccia, G Cacciola, Y I Aristov. Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81–88
https://doi.org/10.1007/BF02475434
77 K M Sukhyy, E A Belyanovskaya, Y N Kozlov, E V Kolomiyets, M P Sukhyy. Structure and adsorption properties of the composites ‘silica gel-sodium sulphate’, obtained by sol-gel method. Applied Thermal Engineering, 2014, 64(1-2): 408–412
https://doi.org/10.1016/j.applthermaleng.2013.12.013
78 S Mintova, J P Gilson, V Valtchev. Advances in nanosized zeolites. Nanoscale, 2013, 5(15): 6693–6703
https://doi.org/10.1039/c3nr01629c
79 E Koohsaryan, M Anbia. Nanosized and hierarchical zeolites: a short review. Chinese Journal of Catalysis, 2016, 37(4): 447–467
https://doi.org/10.1016/S1872-2067(15)61038-5
80 E Koohsaryan, M Anbia. Facile and rapid synthesis of highly crystalline mesoporous zeolite FAU. Materials Letters, 2019, 236: 390–393
https://doi.org/10.1016/j.matlet.2018.10.139
81 M Anbia, E Koohsaryan, A Borhani. Novel hydrothermal synthesis of hierarchically-structured zeolite LTA microspheres. Materials Chemistry and Physics, 2017, 193: 380–390
https://doi.org/10.1016/j.matchemphys.2017.02.048
82 R Dehghan, M Anbia. Zeolites for adsorptive desulfurization from fuels: a review. Fuel Processing Technology, 2017, 167: 99–116
https://doi.org/10.1016/j.fuproc.2017.06.015
83 M Khabazipour, M Anbia. Removal of hydrogen sulfide from gas streams using porous materials: a review. Industrial & Engineering Chemistry Research, 2019, 58(49): 22133–22164
https://doi.org/10.1021/acs.iecr.9b03800
84 Y Li, J Yu. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chemical Reviews, 2014, 114(14): 7268–7316
https://doi.org/10.1021/cr500010r
85 V Valtchev, L Tosheva. Porous nanosized particles: preparation, properties, and applications. Chemical Reviews, 2013, 113(8): 6734–6760
https://doi.org/10.1021/cr300439k
86 M Zaarour, B Dong, I Naydenova, R Retoux, S Mintova. Progress in zeolite synthesis promotes advanced applications. Microporous and Mesoporous Materials, 2014, 189: 11–21
https://doi.org/10.1016/j.micromeso.2013.08.014
87 M Maldonado, M D Oleksiak, S Chinta, J D Rimer. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. Journal of the American Chemical Society, 2013, 135(7): 2641–2652
https://doi.org/10.1021/ja3105939
88 R Collier, T Cale, Z Lavan. Advanced desiccant materials assessment. Final report, February 1985-May 1986. PB-87-172805/XAB. 1986
89 K M Kim, H T Oh, S J Lim, K Ho, Y Park, C H Lee. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. Journal of Chemical & Engineering Data, 2016, 61(4): 1547–1554
https://doi.org/10.1021/acs.jced.5b00927
90 P Aprea, B de Gennaro, N Gargiulo, A Peluso, B Liguori, F Iucolano, D Caputo. Sr-, Zn- and Cd-exchanged zeolitic materials as water vapor adsorbents for thermal energy storage applications. Applied Thermal Engineering, 2016, 106: 1217–1224
https://doi.org/10.1016/j.applthermaleng.2016.06.066
91 P Sharma, J S Song, M H Han, C H Cho. GIS-NaP1 zeolite microspheres as potential water adsorption material: influence of initial silica concentration on adsorptive and physical/topological properties. Scientific Reports, 2016, 6(1): 22734–22759
https://doi.org/10.1038/srep22734
92 D Verboekend, T C Keller, M Milina, R Hauert, J Pérez Ramírez. Hierarchy brings function: mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments. Chemistry of Materials, 2013, 25(9): 1947–1959
https://doi.org/10.1021/cm4006103
93 H Yin, J Zhu. In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chemical Engineering Journal, 2016, 285: 112–120
https://doi.org/10.1016/j.cej.2015.09.108
94 D Verboekend, T C Keller, S Mitchell, J Pérez Ramírez. Hierarchical FAU-and LTA-type zeolites by post-synthetic design: a new generation of highly efficient base catalysts. Advanced Functional Materials, 2013, 23(15): 1923–1934
https://doi.org/10.1002/adfm.201202320
95 T Qian, J Li. Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique. Advanced Powder Technology, 2015, 26(1): 98–104
https://doi.org/10.1016/j.apt.2014.08.010
96 J Chen, X Lu. Equilibrium and kinetics studies of Cd(II) sorption on zeolite NaX synthesized from coal gangue. Journal of Water Reuse and Desalination, 2018, 8(1): 94–101
https://doi.org/10.2166/wrd.2016.137
97 J Chen, X Lu. Synthesis and characterization of zeolites NaA and NaX from coal gangue. Journal of Material Cycles and Waste Management, 2018, 20(1): 489–495
https://doi.org/10.1007/s10163-017-0605-5
98 X Lu, D Shi, J Chen. Sorption of Cu2+ and Co2+ using zeolite synthesized from coal gangue: isotherm and kinetic studies. Environmental Earth Sciences, 2017, 76(17): 591–601
https://doi.org/10.1007/s12665-017-6923-z
99 Q Ge, M Moeen, Q Tian, J Xu, K Feng. Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue. Environmental Science and Pollution Research International, 2020, 27(7): 7398–7408
https://doi.org/10.1007/s11356-019-07412-z
100 S H Park, J K Yang, J H Kim, C B Chung, G Seo. Eco-friendly synthesis of zeolite A from synthesis cakes prepared by removing the liquid phase of aged synthesis mixtures. Green Chemistry, 2015, 17(6): 3571–3578
https://doi.org/10.1039/C5GC00854A
101 H Wen, Y Zhou, J Xie, Z Long, W Zhang, J Wang. Pure-silica ZSM-22 zeolite rapidly synthesized by novel ionic liquid-directed dry-gel conversion. RSC Advances, 2014, 4(91): 49647–49654
https://doi.org/10.1039/C4RA07627C
102 Q Wu, X Wang, G Qi, Q Guo, S Pan, X Meng, J Xu, F Deng, F Fan, Z Feng, C Li, S Maurer, U Müller, F S Xiao. Sustainable synthesis of zeolites without addition of both organotemplates and solvents. Journal of the American Chemical Society, 2014, 136(10): 4019–4025
https://doi.org/10.1021/ja500098j
103 X Cheng, J Mao, X Lv, T Hua, X Cheng, Y Long, Y Tang. Fast synthesis of nanosized zeolite beta from a low-seeded, low-templated dry gel with a seeding-steam-assisted conversion method. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1247–1251
https://doi.org/10.1039/C3TA14235C
104 Z L Hua, J Zhou, J L Shi. Recent advances in hierarchically structured zeolites: synthesis and material performances. Chemical Communications, 2011, 47(38): 10536–10547
https://doi.org/10.1039/c1cc10261c
105 R Zhou, S Zhong, X Lin, N Xu. Synthesis of zeolite T by microwave and conventional heating. Microporous and Mesoporous Materials, 2009, 124(1-3): 117–122
https://doi.org/10.1016/j.micromeso.2009.05.001
106 J Behin, H Kazemian, S Rohani. Sonochemical synthesis of zeolite NaP from clinoptilolite. Ultrasonics Sonochemistry, 2016, 28: 400–408
https://doi.org/10.1016/j.ultsonch.2015.08.021
107 S S Bukhari, J Behin, H Kazemian, S Rohani. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel, 2015, 140: 250–266
https://doi.org/10.1016/j.fuel.2014.09.077
108 J Gordon, H Kazemian, S Rohani. Rapid and efficient crystallization of MIL-53 (Fe) by ultrasound and microwave irradiation. Microporous and Mesoporous Materials, 2012, 162: 36–43
https://doi.org/10.1016/j.micromeso.2012.06.009
109 R Sabouni, H Kazemian, S Rohani. A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chemical Engineering Journal, 2010, 165(3): 966–973
https://doi.org/10.1016/j.cej.2010.09.036
110 E P Ng, S Mintova. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 2008, 114(1-3): 1–26
https://doi.org/10.1016/j.micromeso.2007.12.022
111 H Stach, J Mugele, J Jänchen, E Weiler. Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption, 2005, 11(3-4): 393–404
https://doi.org/10.1007/s10450-005-5405-x
112 K S Wang, C C Liao, R Q Chu, T W Chung. Equilibrium isotherms of water and ethanol vapors on starch sorbents and zeolite 3A. Journal of Chemical & Engineering Data, 2010, 55(9): 3334–3337
https://doi.org/10.1021/je100118p
113 Y Wang, M D LeVan. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. Journal of Chemical & Engineering Data, 2009, 54(10): 2839–2844
https://doi.org/10.1021/je800900a
114 J H Kim, C H Lee, W S Kim, J S Lee, J T Kim, J K Suh, J M Lee. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite. Journal of Chemical & Engineering Data, 2003, 48(1): 137–141
https://doi.org/10.1021/je0201267
115 Ş Ç Sayılgan, M Mobedi, S Ülkü. Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13X-water pair. Microporous and Mesoporous Materials, 2016, 224: 9–16
https://doi.org/10.1016/j.micromeso.2015.10.041
116 B Hunger, O Klepel, C Kirschhock, M Heuchel, H Toufar, H Fuess. Interaction of water with alkali-metal cation-exchanged X type zeolites: a temperature-programmed desorption (TPD) and X-ray diffraction study. Langmuir, 1999, 15(18): 5937–5941
https://doi.org/10.1021/la981284s
117 J Jänchen, D Ackermann, E Weiler, H Stach, W Brösicke. Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat. Thermochimica Acta, 2005, 434(1-2): 37–41
https://doi.org/10.1016/j.tca.2005.01.009
118 H Furukawa, F Gandara, Y B Zhang, J Jiang, W L Queen, M R Hudson, O M Yaghi. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381
https://doi.org/10.1021/ja500330a
119 H T Oh, S J Lim, J H Kim, C H Lee. Adsorption equilibria of water vapor on an alumina/zeolite 13X composite and silica gel. Journal of Chemical & Engineering Data, 2017, 62(2): 804–811
https://doi.org/10.1021/acs.jced.6b00850
120 B C Gates, J R Katzer, G C A Schuit. Chemistry of Catalytic Processes. New York: McGraw Hill, 1997
https://doi.org/10.1016/S0166-9834(00)81837-0
121 J Peri. A model for the surface of a silica-alumina catalyst. Journal of Catalysis, 1976, 41(2): 227–239
https://doi.org/10.1016/0021-9517(76)90338-9
122 A M Ribeiro, T P Sauer, C A Grande, R F Moreira, J M Loureiro, A E Rodrigues. Adsorption equilibrium and kinetics of water vapor on different adsorbents. Industrial & Engineering Chemistry Research, 2008, 47(18): 7019–7026
https://doi.org/10.1021/ie701732x
123 D Ferreira, R Magalhaes, P Taveira, A Mendes. Effective adsorption equilibrium isotherms and breakthroughs of water vapor and carbon dioxide on different adsorbents. Industrial & Engineering Chemistry Research, 2011, 50(17): 10201–10210
https://doi.org/10.1021/ie2005302
124 A Serbezov, J D Moore, Y Wu. Adsorption equilibrium of water vapor on selexsorb-cdx commercial activated alumina adsorbent. Journal of Chemical & Engineering Data, 2011, 56(5): 1762–1769
https://doi.org/10.1021/je100473f
125 X J Liu, Y F Shi, M A Kalbassi, R Underwood, Y S Liu. A comprehensive description of water vapor equilibriums on alumina F-200: adsorption, desorption, and H2O/CO2 binary adsorption. Separation and Purification Technology, 2014, 133: 276–281
https://doi.org/10.1016/j.seppur.2014.06.052
126 X J Liu, Y F Shi, M A Kalbassi, R Underwood, Y S Liu. Water vapor adsorption isotherm expressions based on capillary condensation. Separation and Purification Technology, 2013, 116: 95–100
https://doi.org/10.1016/j.seppur.2013.05.020
[1] Fengli Li, Chuang Chen, Yuda Wang, Wenpeng Li, Guoli Zhou, Haoqin Zhang, Jie Zhang, Jingtao Wang. Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(4): 984-997.
[2] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[3] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[4] Luciano Atzori, Maria Giorgia Cutrufello, Daniela Meloni, Barbara Onida, Delia Gazzoli, Andrea Ardu, Roberto Monaci, Maria Franca Sini, Elisabetta Rombi. Characterization and catalytic activity of soft-templated NiO-CeO2 mixed oxides for CO and CO2 co-methanation[J]. Front. Chem. Sci. Eng., 2021, 15(2): 251-268.
[5] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[6] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[7] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[8] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[9] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[10] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[11] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[12] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[13] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[14] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[15] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed