Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (3) : 376-383    https://doi.org/10.1007/s11705-021-2062-x
RESEARCH ARTICLE
Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures
Hongtao Xie1,2, Qin Geng2, Xiaoyue Liu1, Jian Mao1()
1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
2. Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China
 Download: PDF(1428 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To realize renewable energy conversion, it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction. In this communication, a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering. The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS. Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA∙cm−2 and low Tafel slope of 76.2 mV∙dec–1, and is superior to that of CoS (372 mV) and CeO2 (530 mV) counterparts. And it has long-term durability under alkaline media.

Keywords interface engineering      CoS/CeO2      electrodeposition      electrocatalyst      oxygen evolution reaction     
Corresponding Author(s): Jian Mao   
Online First Date: 13 July 2021    Issue Date: 24 February 2022
 Cite this article:   
Hongtao Xie,Qin Geng,Xiaoyue Liu, et al. Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Front. Chem. Sci. Eng., 2022, 16(3): 376-383.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2062-x
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I3/376
Fig.1  (a and b) SEM images, (c) TEM and (d) HR-TEM images of CoS/CeO2/CC; (e) elemental mapping images Co, S, O and Ce on the surface of CC.
Fig.2  (a) Co 2p, (b) S 2p, (c) Ce 3d, and (d) O 1s HR-XPS spectra of CeO2/CC, CoS/CC, and CoS/CeO2/CC.
Fig.3  (a) The polarization curves and (b) Tafel plots of as-synthesized catalysts (The multi-current process of CoS/CeO2/CC); (c) the current density started at 10 mA?cm−2 and ended at 60 mA?cm−2, with an increment of 10 mA?cm−2 per 1000 s; (d) OER polarization curves for the CoS/CeO2/CC before and after different cycles of accelerated stability test; (e) time-dependent OER stability of CoS/CeO2/CC with a constant current density of 10 mA?cm−2 for more than 30 h.
Fig.4  (a) Density of state plots of CoS/CeO2, CoS, and CeO2, (b) charge density difference (Green regions represent the electron accumulation), (c) electron localization functions of CoS/CeO2.
1 Y Jiao, Y Zheng, M Jaroniec, S Z Qiao. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44(8): 2060–2086
https://doi.org/10.1039/C4CS00470A
2 J Hao, W Yang, Z Peng, C Zhang, Z Huang, W Shi. A nitrogen doping method for CoS2 electrocatalysts with enhanced water oxidation performance. ACS Catalysis, 2017, 7(6): 4214–4220
https://doi.org/10.1021/acscatal.7b00792
3 Q Shi, C Zhu, D Du, Y Lin. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chemical Society Reviews, 2019, 48(12): 3181–3192
https://doi.org/10.1039/C8CS00671G
4 F Wang, L Xia, X Li, W Yang, Y Zhao, J Mao. Nano-ferric oxide embedded in graphene oxide: high-performance electrocatalyst for nitrogen reduction at ambient condition. Energy & Environmental Materials, 2021, 4(1): 88–94
5 C Liu, W Zhou, J Zhang, Z Chen, S Liu, Y Zhang, J Yang, L Xu, W Hu, Y Chen, Y Deng. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Advanced Energy Materials, 2020, 10(46): 2070187
https://doi.org/10.1002/aenm.202070187
6 D Zhao, Z Zhuang, X Cao, C Zhang, Q Peng, C Chen, Y Li. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49(7): 2215–2264
https://doi.org/10.1039/C9CS00869A
7 H Ou, D Wang, Y Li. How to select effective electrocatalysts: nano or single atom? Nano Select, 2020, 2(3): 492–511
https://doi.org/10.1002/nano.202000239
8 M J Kenney, J E Huang, Y Zhu, Y Meng, M Xu, G Zhu, W H Hung, Y Kuang, M Lin, X Sun, et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Research, 2019, 12(6): 1431–1435
https://doi.org/10.1007/s12274-019-2379-7
9 H F Wang, L Chen, H Pang, S Kaskel, Q Xu. MOF-derived electrocatalysts for oxygen reduction oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49(5): 1414–1448
https://doi.org/10.1039/C9CS00906J
10 X Li, X Yang, H Xue, H Pang, Q Xu. Metal-organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2(2): 100027
https://doi.org/10.1016/j.enchem.2020.100027
11 D Li, H Q Xu, L Jiao, H L Jiang. Metal-organic frameworks for catalysis: state of the art challenges and opportunities. EnergyChem, 2019, 1(1): 100005
https://doi.org/10.1016/j.enchem.2019.100005
12 S Zheng. S Zheng, Q Li, H Xue, H Pang, Q Xu. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. National Science Review, 2020, 7(2): 305–314
https://doi.org/10.1093/nsr/nwz137
13 P Liu, H Yin, H Fu, M Zu, H Yang, H Zhao. Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(20): 10096–10129
https://doi.org/10.1039/D0TA01680B
14 H Nong, L Falling, A Bergmann, M Klingenhof, H Tran, C Spöri, R Mom, J Timoshenko, G Zichittella, A Knop-Gericke, et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature, 2020, 587(7834): 408–413
https://doi.org/10.1038/s41586-020-2908-2
15 J Zhang, H Zhang, T Ren, Z Yuan, T Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287
https://doi.org/10.1007/s11705-020-1965-2
16 T Sheng, N Tian, Z Zhou, W Lin, S Sun. Designing Pt-based electrocatalysts with high surface energy. ACS Energy Letters, 2017, 2(8): 1892–1900
https://doi.org/10.1021/acsenergylett.7b00385
17 Y Xiong, J Dong, Z Huang, P Xin, W Chen, Y Wang, Z Li, Z Jin, W Xing, Z Zhuang, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390–397
https://doi.org/10.1038/s41565-020-0665-x
18 Z Zhuang, Y Wang, C Xu, S Liu, C Chen, Q Peng, Z Zhuang, H Xiao, Y Pan, S Lu, et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10(1): 4875
https://doi.org/10.1038/s41467-019-12885-0
19 J Pei, J Mao, X Liang, C Chen, Q Peng, D Wang, Y Li. Ir-Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 2016, 52(19): 3793–3796
https://doi.org/10.1039/C6CC00552G
20 Z Wu, X Lu, S Zang, X Lou. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Advanced Functional Materials, 2020, 30(15): 1910274
https://doi.org/10.1002/adfm.201910274
21 Y Zhang, J Xiao, Q Lv, S Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Frontiers of Chemical Science and Engineering, 2018, 12(3): 494–508
https://doi.org/10.1007/s11705-018-1732-9
22 H Sun, Z Yan, F Liu, W Xu, F Cheng, J Chen. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Advanced Materials, 2020, 32(3): e1806326
https://doi.org/10.1002/adma.201806326
23 Y Li, J Yin, L An, M Lu, K Sun, Y Zhao, D Gao, F Cheng, P Xi. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14(26): e1801070
https://doi.org/10.1002/smll.201801070
24 J Wang, W Cui, Q Liu, Z Xing, A M Asiri, X Sun. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230
https://doi.org/10.1002/adma.201502696
25 B Cui, Z Hu, C Liu, S Liu, F Chen, S Hu, J Zhang, W Zhou, Y Deng, Z Qin, et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Research, 2021, 14(4): 1149–1155
https://doi.org/10.1007/s12274-020-3164-3
26 Y Zhu, C Guo, Y Zheng, S Z Qiao. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Accounts of Chemical Research, 2017, 50(4): 915–923
https://doi.org/10.1021/acs.accounts.6b00635
27 W Huang, X Li, X Yang, H Zhang, P Liu, Y Ma, X Lu. CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chemical Engineering Journal, 2021, 420: 127595
https://doi.org/10.1016/j.cej.2020.127595
28 X Long, H Lin, D Zhou, Y An, S Yang. Enhancing full water-splitting performance of transition metal bifunctional electrocatalysts in alkaline solutions by tailoring CeO2-transition metal oxides-Ni nanointerfaces. ACS Energy Letters, 2018, 3(2): 290–296
https://doi.org/10.1021/acsenergylett.7b01130
29 M Li, X Pan, M Jiang, Y Zhang, Y Tang, G Fu. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 2020, 395: 125160
https://doi.org/10.1016/j.cej.2020.125160
30 J Feng, S Ye, H Xu, Y Tong, G Li. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703
https://doi.org/10.1002/adma.201600054
31 H Xie, Q Geng, X Liu, X Xu, F Wang, L M Mao, J Mao. Solvent-assisted synthesis of dendritic cerium hexacyanocobaltate and derived porous dendritic Co3O4/CeO2 as supercapacitor electrode materials. CrystEngComm, 2021, 23(8): 1704–1708
https://doi.org/10.1039/D0CE01726D
32 J Hao, W Luo, W Yang, L Li, W Shi. Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium co-doped CoS2 electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(43): 22694–22702
https://doi.org/10.1039/D0TA07163C
33 B Liu, S Qu, Y Kou, Z Liu, X Chen, Y Wu, X Han, Y Deng, W Hu, C Zhong. In situ electrodeposition of cobalt sulfide nanosheet arrays on carbon cloth as a highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. ACS Applied Materials & Interfaces, 2018, 10(36): 30433–30440
https://doi.org/10.1021/acsami.8b10645
34 H Xie, Q Geng, X Li, T Wang, Y Luo, A Alshehri, K Alzahrani, B Li, Z Wang, J Mao. Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N2 conversion to NH3 under ambient conditions. Chemical Communications, 2019, 55(72): 10717–10720
https://doi.org/10.1039/C9CC05309C
35 B Qiu, C Wang, N Zhang, L Cai, Y Xiong, Y Chai. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catalysis, 2019, 9(7): 6484–6490
https://doi.org/10.1021/acscatal.9b01819
36 M Sung, G Lee, D Kim. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. Journal of Alloys and Compounds, 2019, 800: 450–455
https://doi.org/10.1016/j.jallcom.2019.06.047
37 H Xie, L Mao, J Mao. Structural evolution of Ce[Fe(CN)6] and derived porous Fe-CeO2 with high performance for supercapacitor. Chemical Engineering Journal, 2021, 421: 127826
https://doi.org/10.1016/j.cej.2020.127826
38 H Xie, H Wang, Q Geng, Z Xing, W Wang, J Chen, L Ji, L Chang, Z Wang, J Mao. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427
https://doi.org/10.1021/acs.inorgchem.9b00622
39 P Liu, X Li, S Yang, M Zu, P Liu, B Zhang, L Zheng, H Zhao, H Yang. Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Letters, 2017, 2(10): 2257–2263
https://doi.org/10.1021/acsenergylett.7b00638
40 L Sun, L Zhou, C Yang, Y Yuan. CeO2 nanoparticle-decorated reduced graphene oxide as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2017, 42(22): 15140–15148
https://doi.org/10.1016/j.ijhydene.2017.04.257
41 J Hu, S Li, J Chu, S Niu, J Wang, Y Du, Z Li, X Han, P Xu. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catalysis, 2019, 9(12): 10705–10711
https://doi.org/10.1021/acscatal.9b03876
42 T Li, S Li, Q Liu, Y Tian, Y Zhang, G Fu, Y Tang. Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17950–17957
https://doi.org/10.1021/acssuschemeng.9b04699
43 Z Xue, X Li, Q Liu, M Cai, K Liu, M Liu, Z Ke, X Liu, G Li. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Advanced Materials, 2019, 31(21): e1900430
https://doi.org/10.1002/adma.201900430
44 J Zhang, L Yu, Y Chen, X Lu, S Gao, X Lou. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Advanced Materials, 2020, 32(16): e1906432
https://doi.org/10.1002/adma.201906432
45 Y Zhang, B Ouyang, J Xu, G Jia, S Chen, R Rawat, H Fan. Rapid synthesis of cobalt nitride Nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angewandte Chemie International Edition, 2016, 55(30): 8670–8674
https://doi.org/10.1002/anie.201604372
46 S Tang, X Wang, Y Zhang, M Courte, H Fan, D Fichou. Combining Co3S4 and Ni:Co3S4 nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11(5): 2202–2210
https://doi.org/10.1039/C8NR07787H
47 J Zhang, T Wang, D Pohl, B Rellinghaus, R Dong, S Liu, X Zhuang, X Feng. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angewandte Chemie International Edition, 2016, 55(23): 6702–6707
https://doi.org/10.1002/anie.201602237
48 X He, X Yi, F Yin, B Chen, G Li, H Yin. Less active CeO2 regulating bifunctional oxygen electrocatalytic activity of Co3O4@N-doped carbon for Zn-air batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(12): 6753–6765
https://doi.org/10.1039/C9TA00302A
49 Y Dou, C He, L Zhang, H Yin, M Al-Mamun, J Ma, H Zhao. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nature Communications, 2020, 11(1): 1664
https://doi.org/10.1038/s41467-020-15498-0
50 Y Zheng, M Gao, Q Gao, H Li, J Xu, Z Wu, S Yu. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small, 2015, 11(2): 182–188
https://doi.org/10.1002/smll.201401423
51 J Wu, Z Ren, S Du, L Kong, B Liu, W Xi, J Zhu, H Fu. A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research, 2016, 9(3): 713–725
https://doi.org/10.1007/s12274-015-0950-4
52 H Yoon, H Song, B Ju, D Kim. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Research, 2020, 13(9): 2469–2477
https://doi.org/10.1007/s12274-020-2881-y
53 X Zhang, Z Yang, Z Lu, W Wang. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: a theoretical evaluation. Carbon, 2018, 130: 112–119
https://doi.org/10.1016/j.carbon.2017.12.121
54 Y Xu, B Li, S Zheng, P Wu, J Zhan, H Xue, Q Xu, H Pang. Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(44): 22070–22076
https://doi.org/10.1039/C8TA03128B
55 M Guo, K Xu, Y Qu, F Zeng, C Yuan. Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. Electrochimica Acta, 2018, 268: 10–19
https://doi.org/10.1016/j.electacta.2018.02.088
56 Y Li, Z Mao, Q Wang, D Li, R Wang, B He, Y Gong, H Wang. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chemical Engineering Journal, 2020, 390: 124556
https://doi.org/10.1016/j.cej.2020.124556
57 Y Zhu, L Song, N Song, M Li, C Wang, X Lu. Bifunctional and efficient CoS2-C@MoS2 core-shell nanofiber electrocatalyst for water splitting. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2899–2905
https://doi.org/10.1021/acssuschemeng.8b05462
58 X Wu, T Zhang, J Wei, P Feng, X Yan, Y Tang. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Research, 2020, 13(8): 2130–2135
https://doi.org/10.1007/s12274-020-2819-4
59 Z Yang, X Liang. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Research, 2020, 13(2): 461–466
https://doi.org/10.1007/s12274-020-2630-2
60 B Cui, Z Hu, C Liu, S Liu, F Chen, S Hu, J Zhang, W Zhou, Y Deng, Z Qin, Z Wu, Y Chen, L Cui, W Hu. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Research, 2020, 14(4): 1149–1155
https://doi.org/10.1007/s12274-020-3164-3
61 Y Wu, H Wang, S Ji, B Pollet, X Wang, R Wang. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Research, 2020, 13(8): 2098–2105
https://doi.org/10.1007/s12274-020-2816-7
62 F Wang, J Mao. Extra Li-Ion storage and rapid Li-ion transfer of a graphene quantum dot tiling hollow porous SiO2 anode. ACS Applied Materials & Interfaces, 2021, 13(11): 13191–13199
https://doi.org/10.1021/acsami.0c22636
63 H Xie, J Wang, W Wang. Constructing porous carbon nanomaterials using redox-induced low molecular weight hydrogels and their application as supercapacitors. ChemistrySelect, 2017, 2(29): 9330–9335
https://doi.org/10.1002/slct.201701702
[1] FCE-20117-OF-XH_suppl_1 Download
[1] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[2] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[3] Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
[4] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[5] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[6] Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 425-432.
[7] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[8] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[9] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
[10] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[11] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed