|
|
A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems |
Stefano Capizzano1, Mirko Frappa1, Francesca Macedonio1( ), Enrico Drioli1,2,3( ) |
1. Institute of Membrane Technology, National Research Council of Italy, Rende 87036, Italy 2. Department of Environmental Engineering, University of Calabria, Rende, Italy 3. Nanjing Tech University, College of Chemical Engineering, Nanjing 211816, China |
|
|
Abstract One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.
|
Keywords
membrane distillation
recent developments
heat and mass transfer
wetting
membrane material
|
Corresponding Author(s):
Francesca Macedonio,Enrico Drioli
|
Online First Date: 16 December 2021
Issue Date: 28 March 2022
|
|
1 |
N A Eckhardt, E Cominelli, M Galbiati, C Tonelli. The future of science: food and water for life. Plant Cell, 2009, 21(2): 368–372
https://doi.org/10.1105/tpc.109.066209
|
2 |
A Boretti, L Rosa. Reassessing the projections of the world water development report. NPJ Clean Water, 2019, 2(1): 1–6
https://doi.org/10.1038/s41545-019-0039-9
|
3 |
M A Shannon, P W Bohn, M Elimelech, J G Georgiadis, B J Mariñas, A M Mayers. Science and technology for water purification in the coming decades. Nature, 2009, 452(7185): 301–310
https://doi.org/10.1038/nature06599
|
4 |
F S Pinto, R C Marques. Desalination projects economic feasibility: a standardization of cost determinants. Renewable & Sustainable Energy Reviews, 2017, 78: 904–915
https://doi.org/10.1016/j.rser.2017.05.024
|
5 |
GWI and IDA. IDA Water Security Handbook 2018–2019. Oxford (United Kingdom): Media Analytics Ltd., 2018, 4–28
|
6 |
U K Kesieme, N Milne, H Aral, C Y Cheng, M Duke. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 2013, 323: 66–74
https://doi.org/10.1016/j.desal.2013.03.033
|
7 |
A Ali, R A Tufa, F Macedonio, E Curcio, E Drioli. Membrane technology in renewable-energy-driven desalination. Renewable & Sustainable Energy Reviews, 2018, 81: 1–21
https://doi.org/10.1016/j.rser.2017.07.047
|
8 |
M Gryta. Capillary polypropylene membranes for membrane distillation. Fibers (Basel, Switzerland), 2019, 7(1): 1
https://doi.org/10.3390/fib7010001
|
9 |
E Curcio, A Criscuoli, E Drioli. Membrane crystallizers. Industrial & Engineering Chemistry Research, 2001, 40(12): 2679–2684
https://doi.org/10.1021/ie000906d
|
10 |
E Drioli, A Criscuoli, E Curcio. Membrane contactors: Fundamentals, Applications and Potentialities. 1st ed. Amsterdam: Elsevier, 2006, 24
|
11 |
F Macedonio, E Drioli. Special issue of desalination journal on “membrane engineering for desalination in the mining and extraction industry”. Desalination, 2018, 440: 1
https://doi.org/10.1016/j.desal.2018.04.025
|
12 |
C A Quinst-Jensen, F Macedonio, E Drioli. Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for Mining from the sea. Crystals, 2016, 6(4): 36
https://doi.org/10.3390/cryst6040036
|
13 |
E Chabanon, D Mangin, C Charcosset. Membranes and crystallization processes: state of the art and prospects. Journal of Membrane Science, 2016, 509: 57–67
https://doi.org/10.1016/j.memsci.2016.02.051
|
14 |
F Macedonio, C A Quist-Jensen, O Al-Harbi, H Alromaih, S A Al-Jlil, F Al Shabouna, E Drioli. Thermodynamic modeling of brine and its use in membrane crystallizer. Desalination, 2013, 323: 83–92
https://doi.org/10.1016/j.desal.2013.02.009
|
15 |
P Biniaz, N Torabi Ardekani, M A Makarem, M R Rahimpour. Water and wastewater treatment systems by novel integrated membrane distillation (MD). ChemEngineering, 2019, 3(1): 8
https://doi.org/10.3390/chemengineering3010008
|
16 |
G Zaragoza, J A Andrés-Mañas, A Ruiz-Aguirre. Commercial scale membrane distillation for solar desalination. NPJ Clean Water, 2018, 1(1): 1–6
https://doi.org/10.1038/s41545-018-0020-z
|
17 |
E Guillén-Burrieza, J Blanco, G Zaragoza, D C Alarcón, P Palenzuela, M Ibarra, W Gernjak. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science, 2011, 379(1–2): 386–396
https://doi.org/10.1016/j.memsci.2011.06.009
|
18 |
J Koschikowski, M Wieghaus, M Rommel, V S Ortin, B P Suarez, J R Rodríguez. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination, 2009, 248(1–3): 125–131
https://doi.org/10.1016/j.desal.2008.05.047
|
19 |
R Schwantes, L Bauer, K Chavan, D Dücker, C Felsmann, J Pfafferott. Air gap membrane distillation for hypersaline brine concentration: Operational analysis of a full-scale module–New strategies for wetting mitigation. Desalination, 2018, 444: 13–25
https://doi.org/10.1016/j.desal.2018.06.012
|
20 |
A Ruiz-Aguirre, J A Andrés-Mañas, J M Fernández-Sevilla, G Zaragoza. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology, 2018, 205: 212–222
https://doi.org/10.1016/j.seppur.2018.05.044
|
21 |
E S Mohamed, P Boutikos, E Mathioulakis, V Belessiotis. Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system. Desalination, 2017, 408: 70–80
https://doi.org/10.1016/j.desal.2016.12.020
|
22 |
E Drioli, A Ali, F Macedonio. Membrane distillation: Recent developments and perspectives. Desalination, 2015, 356: 56–84
https://doi.org/10.1016/j.desal.2014.10.028
|
23 |
M Khayet. Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 2011, 164(1–2): 56–88
https://doi.org/10.1016/j.cis.2010.09.005
|
24 |
L Martínez, F J Florido-Díaz, A Hernandez, P Prádanos. Characterisation of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities. Journal of Membrane Science, 2002, 203(1–2): 15–27
https://doi.org/10.1016/S0376-7388(01)00719-0
|
25 |
M A Izquierdo-Gil, M C Garcıa-Payo, C Fernández-Pineda. Air gap membrane distillation of sucrose aqueous solutions. Journal of Membrane Science, 1999, 155(2): 291–307
https://doi.org/10.1016/S0376-7388(98)00323-8
|
26 |
S Al-Obaidani, E Curcio, F Macedonio, G Di Profio, H Al-Hinai, E Drioli. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98
https://doi.org/10.1016/j.memsci.2008.06.006
|
27 |
C Picard, A Larbot, F Guida-Pietrasanta, B Boutevin, A Ratsimihety. Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Separation and Purification Technology, 2001, 25(1–3): 65–69
https://doi.org/10.1016/S1383-5866(01)00091-0
|
28 |
A Dafinov, R Garcia-Valls, J Font. Modification of ceramic membranes by alcohol adsorption. Journal of Membrane Science, 2002, 196(1): 69–77
https://doi.org/10.1016/S0376-7388(01)00575-0
|
29 |
C C Ko, A Ali, E Drioli, K L Tung, C H Chen, Y R Chen, F Macedonio. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination, 2018, 440: 48–58
https://doi.org/10.1016/j.desal.2018.03.011
|
30 |
X Chen, X Gao, K Fu, M Qiu, F Xiong, D Ding, Z Cui, Z Wang, Y Fan, E Drioli. Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination, 2018, 443: 212–220
https://doi.org/10.1016/j.desal.2018.05.027
|
31 |
A Ali, F Macedonio, E Drioli, S Aljlil, O A Alharbi. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chemical Engineering Research & Design, 2013, 91(10): 1966–1977
https://doi.org/10.1016/j.cherd.2013.06.030
|
32 |
E Drioli, L Giorno, E Fontananova. Comprehensive Membrane Science and Engineering. 2nd ed. Oxford: Elsevier, 2017: 282–296
|
33 |
J Ravi, M H D Othman, T Matsuura, M Ro’il Bilad, T H El-badawy, F Aziz, A F Ismail, M A Rahman, J Jaafar. Polymeric membranes for desalination using membrane distillation: a review. Desalination, 2020, 490: 114530
https://doi.org/10.1016/j.desal.2020.114530
|
34 |
M Yao, L D Tijing, G Naidu, S H Kim, H Matsuyama, A G Fane, H K Shon. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination, 2020, 479: 114312
https://doi.org/10.1016/j.desal.2020.114312
|
35 |
A Alkhudhiri, N Hilal. Emerging Technologies for Sustainable Desalination Handbook. 1st ed. Oxford: Butterworth-Heinemann, 2018, 55–106
|
36 |
Y Cohen. Materials and Energy: Volume 17. Advances in Water Desalination Technologies. Singapore: World Scientific Publishing Co. Pte. Ltd., 2021, 227–261
|
37 |
A Alhathal Alanezi, H Abdallah, E El-Zanati, A Ahmad, A O Sharif. Performance investigation of O-ring vacuum membrane distillation module for water desalination. Journal of Chemistry, 2016: 9378460
|
38 |
G Gude. Emerging Technologies for Sustainable Desalination Handbook. Burlington: Butterworth-Heinemann, 2018, 55–98
|
39 |
A C Franken, J A Nolten, M H Mulder, D Bargeman, C A Smolders. Wetting criteria for the applicability of membrane distillation. Journal of Membrane Science, 1987, 33(3): 315–328
https://doi.org/10.1016/S0376-7388(00)80288-4
|
40 |
L D Tijing, Y C Woo, J S Choi, S Lee, S H Kim, H K Shon. Fouling and its control in membrane distillation—a review. Journal of Membrane Science, 2015, 475: 215–244
https://doi.org/10.1016/j.memsci.2014.09.042
|
41 |
M Rezaei, D M Warsinger, M C Duke, T Matsuura, W M Samhaber. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Research, 2018, 139: 329–352
https://doi.org/10.1016/j.watres.2018.03.058
|
42 |
E K Summers, H A Arafat, J H Lienhard. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination, 2012, 290: 54–66
https://doi.org/10.1016/j.desal.2012.01.004
|
43 |
Z Ding, L Liu, Z Li, R Ma, Z Yang. Experimental study of ammonia removal from water by membrane distillation (MD): the comparison of three configurations. Journal of Membrane Science, 2006, 286(1–2): 93–103
https://doi.org/10.1016/j.memsci.2006.09.015
|
44 |
A Basile. Handbook of Membrane Reactors. Volume 2: Reactor Types and Industrial Applications. 1st ed. Philadelphia: Woodhead Publishing, 2013, 78–81
|
45 |
R Bagger-Jørgensen, A S Meyer, C Varming, G Jonsson. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation. Journal of Food Engineering, 2004, 64(1): 23–31
https://doi.org/10.1016/j.jfoodeng.2003.09.009
|
46 |
L H Wang, T Pyatkovskyy, A Yousef, X A Zeng, S K Sastry. Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. Innovative Food Science & Emerging Technologies, 2020, 62: 102349
https://doi.org/10.1016/j.ifset.2020.102349
|
47 |
A Ali, C A Quist-Jensen, F Macedonio, E Drioli. On designing of membrane thickness and thermal conductivity for large scale membrane distillation modules. Journal of Membrane Science and Research, 2016, 2(4): 179–185
|
48 |
P Wang, M M Teoh, T S Chung. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Research, 2011, 45(17): 5489–5500
https://doi.org/10.1016/j.watres.2011.08.012
|
49 |
M Khayet, J I Mengual, T Matsuura. Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. Journal of Membrane Science, 2005, 252(1–2): 101–113
https://doi.org/10.1016/j.memsci.2004.11.022
|
50 |
A Deshmukh, M Elimelech. Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. Journal of Membrane Science, 2017, 539: 458–474
https://doi.org/10.1016/j.memsci.2017.05.017
|
51 |
K W Lawson, D R Loyd. Membrane distillation. Journal of Membrane Science, 1997, 24(1): 1–25
https://doi.org/10.1016/S0376-7388(96)00236-0
|
52 |
K Y Wang, S W Foo, T S Chung. Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Industrial & Engineering Chemistry Research, 2009, 48(9): 4474–4483
https://doi.org/10.1021/ie8009704
|
53 |
L Eykens, K De Sitter, C Dotremont, L Pinoy, B Van der Bruggen. How to optimize the membrane properties for membrane distillation: a review. Industrial & Engineering Chemistry Research, 2016, 55(35): 9333–9343
https://doi.org/10.1021/acs.iecr.6b02226
|
54 |
K Schneider, W Hölz, R Wollbeck, S Ripperger. Membranes and modules for transmembrane distillation. Journal of Membrane Science, 1988, 39(1): 25–42
https://doi.org/10.1016/S0376-7388(00)80992-8
|
55 |
Y Tang, N Li, A Liu, S Ding, C Yi, H Liu. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 2012, 287: 326–339
https://doi.org/10.1016/j.desal.2011.11.045
|
56 |
M Gryta. Fouling in direct contact membrane distillation process. Journal of Membrane Science, 2008, 325(1): 383–394
https://doi.org/10.1016/j.memsci.2008.08.001
|
57 |
H Du, J Li, J Zhang, G Su, X Li, Y Zhao. Separation of hydrogen and nitrogen gases with porous graphene membrane. Journal of Physical Chemistry C, 2011, 115(47): 23261–23266
https://doi.org/10.1021/jp206258u
|
58 |
A Basile, A Cassano, N K Rastogi. Advances in Membrane Technologies for Water Treatment: Materials, Processes and applications. 1st ed. Cambridge: Woodhead Publishing, 2015, 605–624
|
59 |
J C Lin, D J Lee, C Huang. Membrane fouling mitigation: membrane cleaning. Separation Science and Technology, 2010, 45(7): 858–872
https://doi.org/10.1080/01496391003666940
|
60 |
H Norafifah, M Y Noordin, K Y Wong, S Izman, A A Ahmad. A study of operational factors for reducing the fouling of hollow fiber membranes during wastewater filtration. Procedia CIRP, 2015, 26: 781–785
https://doi.org/10.1016/j.procir.2014.07.082
|
61 |
N Shahkaramipour, T N Tran, S Ramanan, H Lin. Membranes with surface-enhanced antifouling properties for water purification. Membranes, 2017, 7(1): 13
https://doi.org/10.3390/membranes7010013
|
62 |
M M Teoh, T S Chung, Y S Yeo. Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation. Chemical Engineering Journal, 2011, 171(2): 684–691
https://doi.org/10.1016/j.cej.2011.05.020
|
63 |
M M Teoh, T S Chung. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology, 2009, 66(2): 229–236
https://doi.org/10.1016/j.seppur.2009.01.005
|
64 |
L Zou, P Gusnawan, Y B Jiang, G Zhang, J Yu. Macrovoid-inhibited PVDF hollow fiber membranes via spinning process delay for direct contact membrane distillation. ACS Applied Materials & Interfaces, 2020, 12(25): 28655–28668
https://doi.org/10.1021/acsami.0c06902
|
65 |
A Mansourizadeh, A F Ismail. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. Journal of Hazardous Materials, 2009, 171(1–3): 38–53
https://doi.org/10.1016/j.jhazmat.2009.06.026
|
66 |
E Drioli, L Giorno. Encyclopedia of Membranes. 1st ed. Berlin: Springer, 2016, 1009–1012
|
67 |
R W Schofield, A G Fane, C J Fell. Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. Journal of Membrane Science, 1990, 53(1–2): 159–171
https://doi.org/10.1016/0376-7388(90)80011-A
|
68 |
C M Guijt, G W Meindersma, T Reith, A B De Haan. Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis. Separation and Purification Technology, 2005, 43(3): 245–255
https://doi.org/10.1016/j.seppur.2004.09.016
|
69 |
A L McGaughey, R D Gustafson, A E Childress. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. Journal of Membrane Science, 2017, 543: 143–150
https://doi.org/10.1016/j.memsci.2017.08.040
|
70 |
M Gryta. Long-term performance of membrane distillation process. Journal of Membrane Science, 2005, 265(1–2): 153–159
https://doi.org/10.1016/j.memsci.2005.04.049
|
71 |
S Srisurichan, R Jiraratananon, A G Fane. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 2006, 277(1–2): 186–194
https://doi.org/10.1016/j.memsci.2005.10.028
|
72 |
L Martínez-Díez, M I Vazquez-Gonzalez. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273
https://doi.org/10.1016/S0376-7388(98)00349-4
|
73 |
M Asghari, M Dehghani, H Riasat Harami, A H Mohammadi. Effects of operating parameters in sweeping gas membrane distillation process: numerical simulation of Persian Gulf seawater desalination. Journal of Water and Environmental Nanotechnology, 2018, 3(2): 128–140
|
74 |
A Ali, C A Quist-Jensen, F Macedonio, E Drioli. Optimization of module length for continuous direct contact membrane distillation process. Chemical Engineering and Processing, 2016, 110: 188–200
https://doi.org/10.1016/j.cep.2016.10.014
|
75 |
A Ali, J H Tsai, K L Tung, E Drioli, F Macedonio. Designing and optimization of continuous direct contact membrane distillation process. Desalination, 2018, 426: 97–107
https://doi.org/10.1016/j.desal.2017.10.041
|
76 |
Y Cerci. Exergy analysis of a reverse osmosis desalination plant in California. Desalination, 2002, 142(3): 257–266
https://doi.org/10.1016/S0011-9164(02)00207-2
|
77 |
F Macedonio, E Curcio, E Drioli. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination, 2007, 203(1–3): 260–276
https://doi.org/10.1016/j.desal.2006.02.021
|
78 |
F Macedonio, E Drioli. An exergetic analysis of a membrane desalination system. Desalination, 2010, 261(3): 293–299
https://doi.org/10.1016/j.desal.2010.06.070
|
79 |
F Macedonio, A Criscuoli, L Gzara, M Albeirutty, E Drioli. Water and salts recovery from desalination brines: an exergy evaluation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105884
https://doi.org/10.1016/j.jece.2021.105884
|
80 |
E Drioli, E Curcio, G Di Profio, F Macedonio, A Criscuoli. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis. Chemical Engineering Research & Design, 2006, 84(3): 209–220
https://doi.org/10.1205/cherd.05171
|
81 |
M Shukuya, A Hammache. Introduction to the concept of exergy-for a better understanding of low-temperature-heating and high-temperature-cooling systems. VTT Technical Research Centre of Finland, VTT Tiedotteita—Research Notes No. 2158, 2002, 1–61
|
82 |
A Ali, C A Quist-Jensen, E Drioli, F Macedonio. Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. Desalination, 2018, 434: 161–168
https://doi.org/10.1016/j.desal.2017.11.035
|
83 |
R A Tufa, Y Noviello, G Di Profio, F Macedonio, A Ali, E Drioli, E Fontananova, K Bouzek, E Curcio. Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. Applied Energy, 2019, 253: 113551
https://doi.org/10.1016/j.apenergy.2019.113551
|
84 |
M L Perrotta, G Saielli, G Casella, F Macedonio, L Giorno, E Drioli, A Gugliuzza. An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Applied Materials Today, 2017, 9: 1–9
https://doi.org/10.1016/j.apmt.2017.04.009
|
85 |
L Eykens, I Hitsov, K De Sitter, C Dotremont, L Pinoy, I Nopens, B Van der Bruggen. Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. Journal of Membrane Science, 2016, 498: 353–364
https://doi.org/10.1016/j.memsci.2015.07.037
|
86 |
Y C Woo, L D Tijing, W G Shim, J S Choi, S H Kim, T He, E Drioli, H K Shon. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 2016, 520: 99–110
https://doi.org/10.1016/j.memsci.2016.07.049
|
87 |
K Celebi, J Buchheim, R M Wyss, A Droudian, P Gasser, I Shorubalko, J I Kye, C Lee, H G Park. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
https://doi.org/10.1126/science.1249097
|
88 |
B Mi. Graphene oxide membranes for ionic and molecular sieving. Science, 2014, 343(6172): 740–742
https://doi.org/10.1126/science.1250247
|
89 |
S P Surwade, S N Smirnov, I V Vlassiouk, R R Unocic, G M Veith, S Dai, S M Mahurin. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
https://doi.org/10.1038/nnano.2015.37
|
90 |
A A Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao, C N Lau. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907
https://doi.org/10.1021/nl0731872
|
91 |
C Y Ho, R W Powell, P E Liley. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279–421
https://doi.org/10.1063/1.3253100
|
92 |
G Grasso, F Galiano, M J Yoo, R Mancuso, H B Park, B Gabriele, A Figoli, E Drioli. Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604: 118017
https://doi.org/10.1016/j.memsci.2020.118017
|
93 |
Y C Woo, Y Kim, W G Shim, L D Tijing, M Yao, L D Nghiem, J S Choi, S H Kim, H K Shon. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. Journal of Membrane Science, 2016, 513: 74–84
https://doi.org/10.1016/j.memsci.2016.04.014
|
94 |
E Gontarek, F Macedonio, F Militano, L Giorno, M Lieder, A Politano, E Drioli, A Gugliuzza. Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. Nanoscale, 2019, 11(24): 11521–11529
https://doi.org/10.1039/C9NR02581B
|
95 |
M Frappa, A D Castillo, F Macedonio, A Politano, E Drioli, F Bonaccorso, V Pellegrini, A Gugliuzza. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Advances, 2020, 2(10): 4728–4739
https://doi.org/10.1039/D0NA00403K
|
96 |
A Gugliuzza, F Macedonio, A Politano, E Drioli. Prospects of 2D materials-based membranes in water desalination. Chemical Engineering Transactions, 2019, 73: 265–270
|
97 |
F Macedonio, A Politano, E Drioli, A Gugliuzza. Bi2Se3-assisted membrane crystallization. Materials Horizons, 2018, 5(5): 912–919
https://doi.org/10.1039/C8MH00612A
|
98 |
M Frappa, F Macedonio, A Gugliuzza, W Jin, E Drioli. Performance of PVDF based membrane with 2D materials for Membrane Assisted-Crystallization process. Membranes, 2021, 11(5): 302
https://doi.org/10.3390/membranes11050302
|
99 |
T N Krupenkin, J A Taylor, T M Schneider, S Yang. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824–3827
https://doi.org/10.1021/la036093q
|
100 |
R B Saffarini, B Mansoor, R Thomas, H A Arafat. Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. Journal of Membrane Science, 2013, 429: 282–294
https://doi.org/10.1016/j.memsci.2012.11.049
|
101 |
Y Yin, N Jeong, T Tong. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. Journal of Membrane Science, 2020, 614: 118503
https://doi.org/10.1016/j.memsci.2020.118503
|
102 |
M Gryta. The application of polypropylene membranes for production of fresh water from brines by membrane distillation. Chemical Papers, 2017, 71(4): 775–784
https://doi.org/10.1007/s11696-016-0059-6
|
103 |
S Meng, Y Ye, J Mansouri, V Chen. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2014, 463: 102–112
https://doi.org/10.1016/j.memsci.2014.03.027
|
104 |
S Srisurichan, R Jiraratananon, A G Fane. Humic acid fouling in the membrane distillation process. Desalination, 2005, 174(1): 63–72
https://doi.org/10.1016/j.desal.2004.09.003
|
105 |
K J Lu, T S Chung. Membrane Distillation: Membranes, Hybrid Systems and Pilot Studies. Boca Raton: CRC Press, 2019, 167–182
|
106 |
A Razmjou, E Arifin, G Dong, J Mansouri, V Chen. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 2012, 415: 850–863
https://doi.org/10.1016/j.memsci.2012.06.004
|
107 |
Z Ma, Y Hong, L Ma, M Su. Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water desalination. Langmuir, 2009, 25(10): 5446–5450
https://doi.org/10.1021/la900494u
|
108 |
C Su, T Horseman, H Cao, K Christie, Y Li, S Lin. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance. Environmental Science & Technology, 2019, 53(20): 11801–11809
https://doi.org/10.1021/acs.est.9b04362
|
109 |
S Lin, S Nejati, C Boo, Y Hu, C O Osuji, M Elimelech. Omniphobic membrane for robust membrane distillation. Environmental Science & Technology Letters, 2014, 1(11): 443–447
https://doi.org/10.1021/ez500267p
|
110 |
K J Lu, J Zuo, J Chang, H N Kuan, T S Chung. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environmental Science & Technology, 2018, 52(7): 4472–4480
https://doi.org/10.1021/acs.est.8b00766
|
111 |
Y C Woo, Y Chen, L D Tijing, S Phuntsho, T He, J S Choi, S H Kim, H K Shon. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242
https://doi.org/10.1016/j.memsci.2017.01.063
|
112 |
H C Yang, J Hou, V Chen, Z K Xu. Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 2016, 55(43): 13398–13407
https://doi.org/10.1002/anie.201601589
|
113 |
Y Chen, K J Lu, S Japip, T S Chung. Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation? Environmental Science & Technology, 2020, 54(19): 12713–12722
https://doi.org/10.1021/acs.est.0c04242
|
114 |
A S Timin, H Gao, D V Voronin, D A Gorin, G B Sukhorukov. Inorganic/organic multilayer capsule composition for improved functionality and external triggering. Advanced Materials Interfaces, 2017, 4(1): 1600338
https://doi.org/10.1002/admi.201600338
|
115 |
H Shi, Y He, Y Pan, H Di, G Zeng, L Zhang, C Zhang. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science, 2016, 506: 60–70
https://doi.org/10.1016/j.memsci.2016.01.053
|
116 |
L W McKeen. Permeability Properties of Plastics and Elastomers. 3rd ed. Waltham: Elsevier, 2012, 21–37
|
117 |
J H Tsai, M L Perrotta, A Gugliuzza, F Macedonio, L Giorno, E Drioli, K L Tung, E Tocci. Membrane-assisted crystallization: a molecular view of NaCl nucleation and growth. Applied Sciences (Basel, Switzerland), 2018, 8(11): 2145
https://doi.org/10.3390/app8112145
|
118 |
A Whelan. Polymer Technology Dictionary. 1st ed. London: Springer Science & Business Media, 2012, 341
|
119 |
A Bottino, G Capannelli, S Munari, A Turturro. High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 1988, 68(2–3): 167–177
https://doi.org/10.1016/0011-9164(88)80052-3
|
120 |
A Mansourizadeh, A F Ismail. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988
https://doi.org/10.1016/j.cej.2010.10.034
|
121 |
S Chen, J Ishii, S Horiuchi, M Yoshizawa-Fujita, E I Izgorodina. Difference in chemical bonding between lithium and sodium salts: influence of covalency on their solubility. Physical Chemistry Chemical Physics, 2017, 19(26): 17366–17372
https://doi.org/10.1039/C7CP03009F
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|