Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 1017-1022    https://doi.org/10.1007/s11705-021-2118-y
COMMUNICATION
Microfluidic production of liposomes through liquid--liquid phase separation in ternary droplets
Xu-Chun Song1, Zi-Han Zhou1,2, Ya-Lan Yu1(), Nan-Nan Deng2()
1. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(666 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

Keywords microfluidics      liposomes      ternary droplets      phase separation     
Corresponding Author(s): Ya-Lan Yu,Nan-Nan Deng   
Online First Date: 17 December 2021    Issue Date: 28 June 2022
 Cite this article:   
Xu-Chun Song,Zi-Han Zhou,Ya-Lan Yu, et al. Microfluidic production of liposomes through liquid--liquid phase separation in ternary droplets[J]. Front. Chem. Sci. Eng., 2022, 16(6): 1017-1022.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2118-y
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/1017
Fig.1  Schematics of the preparation of liposomes from single O/W emulsion droplets: (a) single-stage microfluidic device, (b) phase separation in an oil-in-water droplet to form a water-in-oil-in-water double emulsion droplet, and (c) the dewetting process of W/O/W droplets to form liposomes.
Fig.2  Liquid–liquid phase separation process of the ternary composition of butyl acetate-water-ethanol.
Fig.3  (a) The ternary phase diagram of the butyl acetate-water-ethanol system, (b) uniform ternary mixture corresponding to point A in (a), and (c) non-uniform ternary mixture corresponding to point B in (a).
Fig.4  Optical images showing phase separation process in ternary droplets: (a) microfluidic generation of O/W droplets, (b) phase separation in O/W droplets, and (c) as-prepared W/O/W double emulsion droplets. Scale bars: (a) 100 μm, (b) 20 μm, and (c) 50 μm.
Fig.5  Optical images of liposome formation process. Scale bar: 20 μm.
Fig.6  Optical images showing phase separation process in O/W droplet stabilized by Pluronic F-127. Scale bar: 20 μm.
1 K A Podolsky, N K Devaraj. Synthesis of lipid membranes for artificial cells. Nature Reviews. Chemistry, 2021, 5(10): 676–694
https://doi.org/10.1038/s41570-021-00303-3
2 B S Pattni, V V Chupin, V P Torchilin. New developments in liposomal drug delivery. Chemical Reviews, 2015, 115(19): 10938–10966
https://doi.org/10.1021/acs.chemrev.5b00046
3 V P Torchilin. Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery, 2005, 4(2): 145–160
https://doi.org/10.1038/nrd1632
4 S S Mansy, J P Schrum, M Krishnamurthy, S Tobe, D A Treco, J W Szostak. Template-directed synthesis of a genetic polymer in a model protocell. Nature, 2008, 454(7200): 122–125
https://doi.org/10.1038/nature07018
5 P Y Bolinger, D Stamou, H Vogel. Integrated nanoreactor systems: triggering the release and mixing of compounds inside single vesicles. Journal of the American Chemical Society, 2004, 126(28): 8594–8595
https://doi.org/10.1021/ja049023u
6 V Noireaux, A Libchaber. A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51): 17669–17674
https://doi.org/10.1073/pnas.0408236101
7 F Villarreal, C Tan. Cell-free systems in the new age of synthetic biology. Frontiers of Chemical Science and Engineering, 2017, 11(1): 58–65
https://doi.org/10.1007/s11705-017-1610-x
8 M Bally, K Bailey, K Sugihara, D Grieshaber, J Voros, B Stadler. Liposome and lipid bilayer arrays towards biosensing applications. Small, 2010, 6(22): 2481–2497
https://doi.org/10.1002/smll.201000644
9 J Zhou, Q X Wang, C Y Zhang. Liposome-quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. Journal of the American Chemical Society, 2013, 135(6): 2056–2059
https://doi.org/10.1021/ja3110329
10 K S Horger, D J Estes, R Capone, M Mayer. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. Journal of the American Chemical Society, 2009, 131(5): 1810–1819
https://doi.org/10.1021/ja805625u
11 V Pereno, D Carugo, L Bau, E Sezgin, J Bernardino de la Serna, C Eggeling, E Stride. Electroformation of giant unilamellar vesicles on stainless steel electrodes. ACS Omega, 2017, 2(3): 994–1002
https://doi.org/10.1021/acsomega.6b00395
12 H Bi, B Yang, L Wang, W Cao, X Han. Electroformation of giant unilamellar vesicles using interdigitated ITO electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(24): 7125–7130
https://doi.org/10.1039/c3ta10323d
13 S Pautot, B J Frisken, D A Weitz. Engineering asymmetric vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10718–10721
https://doi.org/10.1073/pnas.1931005100
14 N Rodriguez, F Pincet, S Cribier. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids and Surfaces. B, Biointerfaces, 2005, 42(2): 125–130
https://doi.org/10.1016/j.colsurfb.2005.01.010
15 K A Runas, N Malmstadt. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter, 2015, 11(3): 499–505
https://doi.org/10.1039/C4SM01478B
16 S Pautot, B J Frisken, D A Weitz. Production of unilamellar vesicles using an inverted emulsion. Langmuir, 2003, 19(7): 2870–2879
https://doi.org/10.1021/la026100v
17 Y L Yu, Z H Zhou, W T Yu, Y Z Song, M Q Xie. Preparation of magnetic porous microspheres and their ability to remove oils. Macromolecular Materials and Engineering, 2020, 305(1): 1900452
https://doi.org/10.1002/mame.201900452
18 Y Liu, Y Li, A Hensel, J J Brandner, K Zhang, X Du, Y Yang. A review on emulsification via microfluidic processes. Frontiers of Chemical Science and Engineering, 2020, 14(3): 350–364
https://doi.org/10.1007/s11705-019-1894-0
19 W Wang, M J Zhang, L Y Chu. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47(2): 373–384
https://doi.org/10.1021/ar4001263
20 W Wang, R Xie, X J Ju, T Luo, L Liu, D A Weitz, L Y Chu. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11(9): 1587–1592
https://doi.org/10.1039/c1lc20065h
21 Y Geng, S Ling, J Huang, J Xu. Multiphase microfluidics: fundamentals, fabrication, and functions. Small, 2020, 16(6): 1906357
https://doi.org/10.1002/smll.201906357
22 L R Arriaga, S S Datta, S H Kim, E Amstad, T E Kodger, F Monroy, D A Weitz. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small, 2014, 10(5): 950–956
https://doi.org/10.1002/smll.201301904
23 S Deshpande, Y Caspi, A E C Meijering, C Dekker. Octanol-assisted liposome assembly on chip. Nature Communications, 2016, 7(1): 10447
https://doi.org/10.1038/ncomms10447
24 N N Deng, M Yelleswarapu, W T Huck. Monodisperse uni- and multicompartment liposomes. Journal of the American Chemical Society, 2016, 138(24): 7584–7591
https://doi.org/10.1021/jacs.6b02107
25 N N Deng, M Yelleswarapu, L Zheng, W T S Huck. Microfluidic assembly of monodisperse vesosomes as artificial cell models. Journal of the American Chemical Society, 2017, 139(2): 587–590
https://doi.org/10.1021/jacs.6b10977
26 C H Choi, D A Weitz, C S Lee. One step formation of controllable complex emulsions: from functional particles to simultaneous encapsulation of hydrophilic and hydrophobic agents into desired position. Advanced Materials, 2013, 25(18): 2536–2541
https://doi.org/10.1002/adma.201204657
27 Y Song, A Sauret, H C Shum. All-aqueous multiphase microfluidics. Biomicrofluidics, 2013, 7(6): 061301
https://doi.org/10.1063/1.4827916
28 M F Haase, J Brujic. Tailoring of high-order multiple emulsions by the liquid-liquid phase separation of ternary mixtures. Angewandte Chemie International Edition, 2014, 53(44): 11793–11797
https://doi.org/10.1002/anie.201406040
29 N N Deng, M A Vibhute, L Zheng, H Zhao, M Yelleswarapu, W T S Huck. Macromolecularly crowded protocells from reversibly shrinking monodisperse liposomes. Journal of the American Chemical Society, 2018, 140(24): 7399–7402
https://doi.org/10.1021/jacs.8b03123
[1] Jun Pan, Lixun Zhang, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Naser Tavajohi. Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 720-730.
[2] Hongzhan Di, Gregory J. O. Martin, Dave E. Dunstan. Characterization of particle deposition during crossflow filtration as influenced by permeate flux and crossflow velocity using a microfluidic filtration system[J]. Front. Chem. Sci. Eng., 2021, 15(3): 552-561.
[3] Yichen Liu, Yongli Li, Andreas Hensel, Juergen J. Brandner, Kai Zhang, Xiaoze Du, Yongping Yang. A review on emulsification via microfluidic processes[J]. Front. Chem. Sci. Eng., 2020, 14(3): 350-364.
[4] Si Hyung Jin, Jae-Hoon Jung, Seong-Geun Jeong, Jongmin Kim, Tae Jung Park, Chang-Soo Lee. Microfluidic dual loops reactor for conducting a multistep reaction[J]. Front. Chem. Sci. Eng., 2018, 12(2): 239-246.
[5] Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 306-310.
[6] Min Liu,Shenghui Liu,Zhenliang Xu,Yongming Wei,Hu Yang. Formation of microporous polymeric membranes via thermally induced phase separation: A review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 57-75.
[7] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
[8] ZHANG Xiujuan, XU Yuanze, YI Xiaosu. Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems[J]. Front. Chem. Sci. Eng., 2008, 2(3): 276-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed