Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (10) : 1460-1475    https://doi.org/10.1007/s11705-022-2159-x
RESEARCH ARTICLE
Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents
Mahsa Javidi Nobarzad1, Maryam Tahmasebpoor1(), Mohammad Heidari1, Covadonga Pevida2()
1. Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 51666-16471, Iran
2. Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Oviedo 33011, Spain
 Download: PDF(6075 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon nanotubes-based materials have been identified as promising sorbents for efficient CO2 capture in fluidized beds, suffering from insufficient contact with CO2 for the high-level CO2 capture capacity. This study focuses on promoting the fluidizability of hard-to-fluidize pure and synthesized silica-coated amine-functionalized carbon nanotubes. The novel synthesized sorbent presents a superior sorption capacity of about 25 times higher than pure carbon nanotubes during 5 consecutive adsorption/regeneration cycles. The low-cost fluidizable-SiO2 nanoparticles are used as assistant material to improve the fluidity of carbon nanotubes-based sorbents. Results reveal that a minimum amount of 7.5 and 5 wt% SiO2 nanoparticles are required to achieve an agglomerate particulate fluidization behavior for pure and synthesized carbon nanotubes, respectively. Pure carbon nanotubes + 7.5 wt% SiO2 and synthesized carbon nanotubes + 5 wt% SiO2 indicates an agglomerate particulate fluidization characteristic, including the high-level bed expansion ratio, low minimum fluidization velocity (1.5 and 1.6 cm·s–1), high Richardson−Zakin index (5.2 and 5.3 > 5), and low Π value (83.2 and 84.8 < 100, respectively). Chemical modification of carbon nanotubes causes not only enhanced CO 2 uptake capacity but also decreases the required amount of silica additive to reach a homogeneous fluidization behavior for synthesized carbon nanotubes sorbent.

Keywords CO2 capture      CNT-based sorbents      fluidization      SiO2 nanoparticles      fluidized bed reactors     
Corresponding Author(s): Maryam Tahmasebpoor,Covadonga Pevida   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 23 May 2022    Issue Date: 17 October 2022
 Cite this article:   
Mahsa Javidi Nobarzad,Maryam Tahmasebpoor,Mohammad Heidari, et al. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1460-1475.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2159-x
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I10/1460
Fig.1  FTIR spectra of pure CNT and MEA-Si-CNT.
Fig.2  SEM micrographs of (a) pure CNT, (b) MEA-Si-CNT, (c) pure CNT + 10 wt% SiO2 NPs, and (d) MEA-Si-CNT + 7.5 wt% SiO2 NPs.
Sorbent CO2 sorption capacity/(mmol CO2·g–1 of sorbent)
1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle
Pure CNT 0.032 0.026 0.023 0.021 0.020
MEA-Si-CNT 0.670 0.670 0.605 0.541 0.553
Tab.1  CO2 sorption capacity of pure CNT and MEA-Si-CNT during 5 consecutive adsorption/regeneration cycles a)
Fig.3  (a) Bed expansion and measured pressure drop curves for pure CNT; (b) plot of log Ug against log εb according to the linear form of the R–Z’s equation for pure CNT.
Sorbent SiO2 NPs/(wt%) ρa/(kg·m–3) Hmf/cm Umf/(cm·s–1) n Index Π Fluidity behavior
Pure CNT + 0 102.35 4.5 2.5 2.5 1388 ABF
2.5 80.7 4.2 2.1 2.8 475 ABF
5 69.4 4.2 1.9 3.8 259 ABF
7.5 57.5 4 1.5 5.2 83.2 APF
10 46.8 3.9 1.3 6.5 35.7 APF
Tab.2  Fluidity characteristics of pure CNT and binary mixtures of pure CNT + SiO2 NPs
Fig.4  (a) Bed expansion curves for binary mixtures of pure CNT + SiO2 NPs and measured pressure drop curves for pure CNT + SiO2 NPs with silica weight percentages of (b) 2.5 wt%, (c) 5 wt%, (d) 7.5 wt% and (e) 10 wt%.
Fig.5  Bed expansion setup pictures for binary mixtures of pure CNT + SiO2 NPs fluidized in dry N2 at a gas velocity of ~3.5 cm·s–1.
Fig.6  Plot of log Ug against log εb for pure CNT + (a) 2.5 wt%, (b) 5 wt%, (c) 7.5 wt% and (d) 10 wt% SiO2 NPs.
Fig.7  (a) Bed expansion curves for binary mixtures of MEA-Si-CNT + SiO2 NPs and measured pressure drop curves for mixtures of MEA-Si-CNT+ SiO2 NPs with silica weight percentages of (b) 2.5 wt%, (c) 5 wt%, and (d) 7.5 wt%.
Fig.8  Bed expansion pictures of mixtures of MEA-Si-CNT + disparate weight percentages of SiO2 NPs fluidized in dry N2 at a gas velocity of ~3.5 cm·s–1.
Sorbent SiO2 NPs/(wt%) ρa/(kg·m–3) Hmf/cm Umf/(cm·s–1) n index Π Fluidity behavior
MEA-Si-CNT + 2.5 64.7 4.4 3.3 1.04 1237 ABF
5 52.1 4.1 1.6 5.3 84.8 APF
7.5 41.5 4 1.2 7.72 22 APF
Tab.3  Fluidity characteristics of binary mixtures of MEA-Si-CNT + SiO2 NPs
Fig.9  Plot of log Ug against log εb for MEA-Si-CNT + (a) 2.5 wt%, (b) 5 wt% and (c) 7.5 wt% SiO2 NPs.
Fig.10  Bed expansion curves for binary mixtures of pure CNT + 7.5 and 10 wt% SiO2 and MEA-Si-CNT + 7.5 wt% SiO2.
1 F Sattari, M Tahmasebpoor, J M Valverde, C Ortiz, M Mohammadpourfard. Modelling of a fluidized bed carbonator reactor for post-combustion CO2 capture considering bed hydrodynamics and sorbent characteristics. Chemical Engineering Journal, 2021, 406 : 126762
https://doi.org/10.1016/j.cej.2020.126762
2 S Roussanaly, M Vitvarova, R Anantharaman, D Berstad, B Hagen, J Jakobsen, V Novotny, G Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14( 3): 436– 452
https://doi.org/10.1007/s11705-019-1870-8
3 S Hafeez, T Safdar, E Pallari, G Manos, E Aristodemou, Z Zhang, S Al-Salem, A Constantinou. CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering, 2021, 15( 4): 720– 754
https://doi.org/10.1007/s11705-020-1992-z
4 S Rama, Y Zhang, F Tchuenbou-Magaia, Y Ding, Y Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture. Frontiers of Chemical Science and Engineering, 2019, 13( 4): 672– 683
https://doi.org/10.1007/s11705-019-1856-6
5 G Xiao, P Xiao, A Hoadley, P Webley. Integrated adsorption and absorption process for post-combustion CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 483– 492
https://doi.org/10.1007/s11705-020-1964-3
6 M Ghahramaninezhad, F Mohajer, M N Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure. Frontiers of Chemical Science and Engineering, 2020, 14( 3): 425– 435
https://doi.org/10.1007/s11705-019-1873-5
7 Z Xu, T Jiang, H Zhang, Y Zhao, X Ma, S Wang. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 698– 708
https://doi.org/10.1007/s11705-020-1981-2
8 Q Xiao, X Tang, Y Liu, Y Zhong, W Zhu. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Frontiers of Chemical Science and Engineering, 2013, 7( 3): 297– 302
https://doi.org/10.1007/s11705-013-1346-1
9 M J Nobarzad, M Tahmasebpoor, M Imani, C Pevida, S Z Heris. Improved CO2 adsorption capacity and fluidization behavior of silica-coated amine-functionalized multi-walled carbon nanotubes. Journal of Environmental Chemical Engineering, 2021, 9( 4): 105786
https://doi.org/10.1016/j.jece.2021.105786
10 M Heidari, M Tahmasebpoor, S B Mousavi, C Pevida. CO2 capture activity of a novel CaO adsorbent stabilized with (ZrO2 + Al2O3 + CeO2)-based additive under mild and realistic calcium looping conditions. Journal of CO2 Utilization , 2021, 53 : 101747
11 C Gu, Y Liu, W Wang, J Liu, J Hu. Effects of functional groups for CO2 capture using metal organic frameworks. Frontiers of Chemical Science and Engineering, 2021, 15( 2): 437– 449
https://doi.org/10.1007/s11705-020-1961-6
12 Y Ban, M Zhao, W Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14( 2): 188– 215
https://doi.org/10.1007/s11705-019-1872-6
13 L Keller, B Ohs, J Lenhart, L Abduly, P Blanke, M Wessling. High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon, 2018, 126 : 338– 345
https://doi.org/10.1016/j.carbon.2017.10.023
14 C Lu, H Bai, B Wu, F Su, J F Hwang. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy & Fuels, 2008, 22( 5): 3050– 3056
https://doi.org/10.1021/ef8000086
15 S B Mousavi, S Zeinali Heris. Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil. International Journal of Hydrogen Energy, 2020, 45( 43): 23603– 23614
https://doi.org/10.1016/j.ijhydene.2020.05.259
16 S S Seyedi, M R Shabgard, S B Mousavi, S Z Heris. The impact of SiC, Al2O3, and B2O3 abrasive particles and temperature on wear characteristics of 18Ni (300) maraging steel in abrasive flow machining (AFM). International Journal of Hydrogen Energy, 2021, 46( 68): 33991– 34001
https://doi.org/10.1016/j.ijhydene.2021.04.051
17 S B Mousavi, Heris S Zeinali, P Estellé. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: an experimental study. Fuel, 2021, 293 : 120481
https://doi.org/10.1016/j.fuel.2021.120481
18 S Hu, X Liu. Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 579– 590
https://doi.org/10.1007/s11705-020-1953-6
19 M Heidari, M Tahmasebpoor, A Antzaras, A A Lemonidou. CO2 capture and fluidity performance of CaO-based sorbents: effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Process Safety and Environmental Protection, 2020, 144 : 349– 365
https://doi.org/10.1016/j.psep.2020.07.041
20 B Azimi, M Tahmasebpoor, P E Sanchez-Jimenez, A Perejon, J M Valverde. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chemical Engineering Journal, 2019, 358 : 679– 690
https://doi.org/10.1016/j.cej.2018.10.061
21 R Atif, F Inam. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein Journal of Nanotechnology, 2016, 7( 1): 1174– 1196
https://doi.org/10.3762/bjnano.7.109
22 W Yao, G Guangsheng, W Fei, W Jun. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technology, 2002, 124( 1): 152– 159
https://doi.org/10.1016/S0032-5910(01)00491-0
23 O Amjadi, M Tahmasebpoor. Improving fluidization behavior of cohesive Ca(OH)2 adsorbent using hydrophilic silica nanoparticles: parametric investigation. Particuology, 2018, 5 : 52– 61
https://doi.org/10.1016/j.partic.2017.12.004
24 S W Kim. Effect of particle size on carbon nanotube aggregates behavior in dilute phase of a fluidized bed. Processes, 2018, 6( 8): 121
https://doi.org/10.3390/pr6080121
25 O Amjadi, M Tahmasebpoor, H Aghdasinia. Fluidization behavior of cohesive Ca(OH)2 powders mixed with hydrophobic silica nanoparticles. Chemical Engineering & Technology, 2019, 42( 2): 287– 296
https://doi.org/10.1002/ceat.201800007
26 Y Rahimvandi Noupoor, M Tahmasebpoor. A novel internal assistance method for enhanced fluidization of nanoparticles. Korean Journal of Chemical Engineering, 2019, 36( 8): 1377– 1387
https://doi.org/10.1007/s11814-019-0318-7
27 M Tahmasebpoor, Y R Noupoor, P Badamchizadeh. Fluidity enhancement of hard-to-fluidize nanoparticles by mixing with hydrophilic nanosilica and fluid catalytic cracking particles: experimental and theoretical study. Physics of Fluids, 2019, 31( 7): 073301
https://doi.org/10.1063/1.5100064
28 H Yu, Q Zhang, G Gu, Y Wang, G Luo, F Wei. Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed. AIChE Journal. American Institute of Chemical Engineers, 2006, 52( 12): 4110– 4123
https://doi.org/10.1002/aic.11031
29 M S Lee, S J Park. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition. Journal of Solid State Chemistry, 2015, 226 : 17– 23
https://doi.org/10.1016/j.jssc.2015.01.031
30 M Tahmasebpoor, R Ghasemi Seif Abadi, Y Rahimvandi Noupoor, P Badamchizadeh. Model based on electrostatic repulsion and hydrogen bond forces to estimate the size of nanoparticle agglomerates in fluidization. Industrial & Engineering Chemistry Research, 2016, 55( 50): 12939– 12948
https://doi.org/10.1021/acs.iecr.6b02792
31 Y Shao, Z Li, W Zhong, Z Bian, A Yu. Minimum fluidization velocity of particles with different size distributions at elevated pressures and temperatures. Chemical Engineering Science, 2020, 216 : 115555
https://doi.org/10.1016/j.ces.2020.115555
32 J F Richardson, W N Zaki. Sedimentation and fluidisation: Part I. Chemical Engineering Research & Design, 1997, 75 : S82– S100
https://doi.org/10.1016/S0263-8762(97)80006-8
33 L F Hakim, J L Portman, M D Casper, A W Weimer. Aggregation behavior of nanoparticles in fluidized beds. Powder Technology, 2005, 160( 3): 149– 160
https://doi.org/10.1016/j.powtec.2005.08.019
34 J Yang, T Zhou, L Song. Agglomerating vibro-fluidization behavior of nano-particles. Advanced Powder Technology, 2009, 20( 2): 158– 163
https://doi.org/10.1016/j.apt.2008.06.002
35 J B Romero, L N Johanson. Factors affecting fluidized bed quality. Chemical Engineering Progress Symposium Series, 1958, 58 : 28– 37
36 C Zhu, Q Yu, R N Dave, R Pfeffer. Gas fluidization characteristics of nanoparticle agglomerates. AIChE Journal. American Institute of Chemical Engineers, 2005, 51( 2): 426– 439
https://doi.org/10.1002/aic.10319
37 L Aljerf. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. Journal of Environmental Management, 2018, 225 : 120– 132
https://doi.org/10.1016/j.jenvman.2018.07.048
38 Amaral Montanheiro T L do, F H Cristóvan, J P B Machado, D B Tada, N Durán, A P Lemes. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. Journal of Materials Research, 2015, 30( 1): 55– 65
https://doi.org/10.1557/jmr.2014.303
39 S C Hsu, C Lu, F Su, W Zeng, W Chen. Thermodynamics and regeneration studies of CO2 adsorption on multi-walled carbon nanotubes. Chemical Engineering Science, 2010, 65( 4): 1354– 1361
https://doi.org/10.1016/j.ces.2009.10.005
40 N Janakiraman, M Johnson. Functional groups of tree ferns (Cyathea) using FTIR: chemotaxonomic implications. Romanian Journal of Biophysics, 2015, 25( 2): 131– 141
41 M Sianipar, S H Kim, F Iskandar, I G Wenten. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Advances, 2017, 7( 81): 51175– 51198
https://doi.org/10.1039/C7RA08570B
42 M Pumera, A Ambrosi, E L K Chng. Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chemical Science (Cambridge), 2012, 3( 12): 3347– 3355
https://doi.org/10.1039/c2sc21374e
43 D Tasis, N Tagmatarchis, A Bianco, M Prato. Chemistry of carbon nanotubes. Chemical Reviews, 2006, 106( 3): 1105– 1136
https://doi.org/10.1021/cr050569o
44 J Yang, Y Xu, C Su, S Nie, Z Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1– 15
https://doi.org/10.1007/s11705-020-2007-9
45 A H Berger, A S Bhown. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia, 2011, 4 : 562– 567
https://doi.org/10.1016/j.egypro.2011.01.089
46 K S Sánchez-Zambrano, Duarte L Lima, Maia D A Soares, E Vilarrasa-García, M Bastos-Neto, E Rodríguez-Castellón, de Azevedo D C Silva. CO2 capture with mesoporous silicas modified with amines by double functionalization: assessment of adsorption/desorption cycles. Materials, 2018, 11( 6): 887
https://doi.org/10.3390/ma11060887
47 H Krupp, G Sperling. Theory of adhesion of small particles. Journal of Applied Physics, 1966, 37( 11): 4176– 4180
https://doi.org/10.1063/1.1707996
48 X Zhu, Q Zhang, C Huang, Y Wang, C Yang, F Wei. Validation of surface coating with nanoparticles to improve the flowability of fine cohesive powders. Particuology, 2017, 30 : 53– 61
https://doi.org/10.1016/j.partic.2016.09.001
49 C Xu, J-X Zhu. Effects of gas type and temperature on fine particle fluidization. China Particuology, 2006, 4( 3−4): 114– 121
50 Q Guo, J Zhang, J Hao. Flow characteristics in an acoustic bubbling fluidized bed at high temperature. Chemical Engineering and Processing, 2011, 50( 3): 331– 337
https://doi.org/10.1016/j.cep.2010.10.003
[1] Jianlin Li, Ti Wang, Pei Liu, Zheng Li. Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants[J]. Front. Chem. Sci. Eng., 2022, 16(2): 198-209.
[2] Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou. CO2 capture using membrane contactors: a systematic literature review[J]. Front. Chem. Sci. Eng., 2021, 15(4): 720-754.
[3] Shanwei Hu, Xinhua Liu. Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds[J]. Front. Chem. Sci. Eng., 2021, 15(3): 579-590.
[4] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[5] Zhihong Xu, Tao Jiang, Hao Zhang, Yujun Zhao, Xinbin Ma, Shengping Wang. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 698-708.
[6] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[7] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[8] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[9] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[10] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[11] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[12] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[13] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[14] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
[15] M. RAJASIMMAN, C. KARTHIKEYAN. Performance of inverse fluidized bed bioreactor in treating starch wastewater[J]. Front Chem Eng Chin, 2009, 3(3): 235-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed