Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (10) : 1526-1529    https://doi.org/10.1007/s11705-022-2161-3
VIEWS & COMMENTS
Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells
Qi Chen1, Cen Zhang1, Lingwei Xue1,2, Zhi-Guo Zhang1()
1. State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2. School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
 Download: PDF(996 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Zhi-Guo Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 09 May 2022    Issue Date: 17 October 2022
 Cite this article:   
Qi Chen,Cen Zhang,Lingwei Xue, et al. Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1526-1529.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2161-3
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I10/1526
Fig.1  (a) Device structure of all-PSCs; (b) schematic illustration of the strategy of PSMA along with (c–e) the building blocks used to construct PSMAs; (f) typical polymer donors that working well with PSMAs.
1 H Sun, X Guo, A Facchetti. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem, 2020, 6( 6): 1310– 1326
https://doi.org/10.1016/j.chempr.2020.05.012
2 Z G Zhang, Y Li. Polymerized small molecule acceptors for high performance all-polymer solar cells. Angewandte Chemie International Edition, 2021, 60( 9): 4422– 4433
https://doi.org/10.1002/anie.202009666
3 G Wang, F S Melkonyan, A Facchetti, T J Marks. All-polymer solar cells: recent progress, challenges, and prospects. Angewandte Chemie International Edition, 2019, 58( 13): 4129– 4142
https://doi.org/10.1002/anie.201808976
4 H Kang, W Lee, J Oh, T Kim, C Lee, B J Kim. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Accounts of Chemical Research, 2016, 49( 11): 2424– 2434
https://doi.org/10.1021/acs.accounts.6b00347
5 G Yu, A J Heeger. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 1995, 78( 7): 4510– 4515
https://doi.org/10.1063/1.359792
6 J J M Halls, C A Walsh, N C Greenham, E A Marseglia, R H Friend, S C Moratti, A B Holmes. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376( 6540): 498– 500
https://doi.org/10.1038/376498a0
7 X Zhan, Z Tan, B Domercq, Z An, X Zhang, S Barlow, Y Li, D Zhu, B Kippelen, S R Marder. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129( 23): 7246– 7247
https://doi.org/10.1021/ja071760d
8 R Zhao, J Liu, L Wang. Polymer acceptors containing B←N units for organic photovoltaics. Accounts of Chemical Research, 2020, 53( 8): 1557– 1567
https://doi.org/10.1021/acs.accounts.0c00281
9 S Shi, P Chen, Y Chen, K Feng, B Liu, J Chen, Q Liao, B Tu, J Luo, M Su. et al.. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Advanced Materials, 2019, 31( 46): 1905161
https://doi.org/10.1002/adma.201905161
10 L Gao, Z G Zhang, L Xue, J Min, J Zhang, Z Wei, Y Li. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Advanced Materials, 2016, 28( 9): 1884– 1890
https://doi.org/10.1002/adma.201504629
11 Z G Zhang, Y Yang, J Yao, L Xue, S Chen, X Li, W Morrison, C Yang, Y Li. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angewandte Chemie International Edition, 2017, 56( 43): 13503– 13507
https://doi.org/10.1002/anie.201707678
12 J Wu, Y Meng, X Guo, L Zhu, F Liu, M Zhang. All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10%. Journal of Materials Chemistry A, 2019, 7( 27): 16190– 16196
https://doi.org/10.1039/C9TA04611A
13 J Yuan, Y Zhang, L Zhou, G Zhang, H L Yip, T K Lau, X Lu, C Zhu, H Peng, P A Johnson. et al.. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3( 4): 1140– 1151
https://doi.org/10.1016/j.joule.2019.01.004
14 J Yuan, T Huang, P Cheng, Y Zou, H Zhang, J L Yang, S Y Chang, Z Zhang, W Huang, R Wang. et al.. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10( 1): 570
https://doi.org/10.1038/s41467-019-08386-9
15 C Zhu, J Yuan, F Cai, L Meng, H Zhang, H Chen, J Li, B Qiu, H Peng, S Chen. et al.. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy & Environmental Science, 2020, 13( 8): 2459– 2466
https://doi.org/10.1039/D0EE00862A
16 T Jia, J Zhang, W Zhong, Y Liang, K Zhang, S Dong, L Ying, F Liu, X Wang, F Huang. et al.. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72 : 104718
https://doi.org/10.1016/j.nanoen.2020.104718
17 W Wang, Q Wu, R Sun, J Guo, Y Wu, M Shi, W Yang, H Li, J Min. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule, 2020, 4( 5): 1070– 1086
https://doi.org/10.1016/j.joule.2020.03.019
18 J Du, K Hu, L Meng, I Angunawela, J Zhang, S Qin, A Liebman-Pelaez, C Zhu, Z Zhang, H Ade. et al.. High performance all-polymer solar cells with the polymer acceptor synthesized via a random ternary copolymerization strategy. Angewandte Chemie International Edition, 2020, 59( 35): 15181– 15185
https://doi.org/10.1002/anie.202005357
19 J Du, K Hu, J Zhang, L Meng, J Yue, I Angunawela, H Yan, S Qin, X Kong, Z Zhang. et al.. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature Communications, 2021, 12( 1): 5264
https://doi.org/10.1038/s41467-021-25638-9
20 H Sun, H Yu, Y Shi, J Yu, Z Peng, X Zhang, B Liu, J Wang, R Singh, J Lee. et al.. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Advanced Materials, 2020, 32( 43): 2004183
https://doi.org/10.1002/adma.202004183
21 H Fu, Y Li, J Yu, Z Wu, Q Fan, F Lin, H Y Woo, F Gao, Z Zhu, A K Y Jen. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. Journal of the American Chemical Society, 2021, 143( 7): 2665– 2670
https://doi.org/10.1021/jacs.0c12527
22 Z Luo, T Liu, R Ma, Y Xiao, L Zhan, G Zhang, H Sun, F Ni, G Chai, J Wang. et al.. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Advanced Materials, 2020, 32( 48): 2005942
https://doi.org/10.1002/adma.202005942
23 H Yu, M Pan, R Sun, I Agunawela, J Zhang, Y Li, Z Qi, H Han, X Zou, W Zhou. et al.. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angewandte Chemie International Edition, 2021, 60( 18): 10137– 10146
https://doi.org/10.1002/anie.202016284
24 R Sun, W Wang, H Yu, Z Chen, X Xia, H Shen, J Guo, M Shi, Y Zheng, Y Wu. et al.. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5( 6): 1548– 1565
https://doi.org/10.1016/j.joule.2021.04.007
25 Z Genene, J W Lee, S W Lee, Q Chen, Z Tan, B A Abdulahi, D Yu, T S Kim, B J Kim, E Wang. Polymer acceptors with flexible spacers afford efficient and mechanically robust all-polymer solar cells. Advanced Materials, 2022, 34( 6): 2107361
https://doi.org/10.1002/adma.202107361
26 C Sun, F Pan, H Bin, J Zhang, L Xue, B Qiu, Z Wei, Z G Zhang, Y Li. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9( 1): 743
https://doi.org/10.1038/s41467-018-03207-x
27 T Zhao, C Cao, H Wang, X Shen, H Lai, Y Zhu, H Chen, L Han, T Rehman, F He. Highly efficient all-polymer solar cells from a dithieno[3,2-f:2′,3′-h]quinoxaline-based wide band gap donor. Macromolecules, 2021, 54( 24): 11468– 11477
https://doi.org/10.1021/acs.macromol.1c01940
28 F Peng, K An, W Zhong, Z Li, L Ying, N Li, Z Huang, C Zhu, B Fan, F Huang. et al.. A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Letters, 2020, 5( 12): 3702– 3707
https://doi.org/10.1021/acsenergylett.0c02053
29 Y Shi, R Ma, X Wang, T Liu, Y Li, S Fu, K Yang, Y Wang, C Yu, L Jiao. et al.. Influence of fluorine substitution on the photovoltaic performance of wide band gap polymer donors for polymer solar cells. ACS Applied Materials & Interfaces, 2022, 14( 4): 5740– 5749
https://doi.org/10.1021/acsami.1c23196
30 T Jia, J Zhang, K Zhang, H Tang, S Dong, C H Tan, X Wang, F Huang. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. Journal of Materials Chemistry A, 2021, 9( 14): 8975– 8983
https://doi.org/10.1039/D1TA00838B
31 Q Liu, Y Jiang, K Jin, J Qin, J Xu, W Li, J Xiong, J Liu, Z Xiao, K Sun. et al.. 18% efficiency organic solar cells. Science Bulletin, 2020, 65( 4): 272– 275
https://doi.org/10.1016/j.scib.2020.01.001
32 Z G Zhang, Y Bai, Y Li. Benzotriazole based 2d-conjugated polymer donors for high performance polymer solar cells. Chinese Journal of Polymer Science, 2021, 39( 1): 1– 13
https://doi.org/10.1007/s10118-020-2496-5
33 Y Wu, J Guo, W Wang, Z Chen, Z Chen, R Sun, Q Wu, T Wang, X Hao, H Zhu. et al.. A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule, 2021, 5( 7): 1800– 1815
https://doi.org/10.1016/j.joule.2021.05.002
34 S Li, X Yuan, Q Zhang, B Li, Y Li, J Sun, Y Feng, X Zhang, Z Wu, H Wei. et al.. Narrow-bandgap single-component polymer solar cells with approaching 9% efficiency. Advanced Materials, 2021, 33( 32): 2101295
https://doi.org/10.1002/adma.202101295
35 Q Fan, W Su, S Chen, W Kim, X Chen, B Lee, T Liu, U A Méndez-Romero, R Ma, T Yang. et al.. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule, 2020, 4( 3): 658– 672
https://doi.org/10.1016/j.joule.2020.01.014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed