Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (11) : 1616-1622    https://doi.org/10.1007/s11705-022-2183-x
RESEARCH ARTICLE
Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials
Yijian Li1, Jianbo Hu2, Jiyu Cui1, Qingju Wang1, Huabin Xing1,2, Xili Cui1,2()
1. Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2. ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
 Download: PDF(4428 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Adsorptive separation of acetylene/carbon dioxide mixtures by porous materials is an important and challenging task due to their similar sizes and physical properties. Here, remarkable acetylene/carbon dioxide separation featuring a high dynamic breakthrough capacity for acetylene (4.3 mmol·g–1) as well as an ultralow acetylene regeneration energy (29.5 kJ·mol–1) was achieved with the novel TiF62–-pillared material ZU-100 (TIFSIX-bpy-Ni). Construction of a pore structure with abundant TiF62– anion sites and pores with appropriate sizes enabled formation of acetylene clusters through hydrogen bonds and intermolecular interactions, which afforded a high acetylene capacity (8.3 mmol·g–1) and high acetylene/carbon dioxide uptake ratio (1.9) at 298 K and 1 bar. Moreover, the NbO52– anion-pillared material ZU-61 investigated for separation of acetylene/carbon dioxide. In addition, breakthrough experiments were also conducted to further confirm the excellent dynamic acetylene/carbon dioxide separation performance of ZU-100.

Keywords adsorption      acetylene/carbon dioxide separation      dynamic capacity      anion-pillared hybrid material     
Corresponding Author(s): Xili Cui   
Online First Date: 01 August 2022    Issue Date: 13 December 2022
 Cite this article:   
Yijian Li,Jianbo Hu,Jiyu Cui, et al. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1616-1622.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2183-x
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I11/1616
Fig.1  Schematic representations of ZU-61 and ZU-100. (a) Sketch of metal node, inorganic pillar and ligand with the pyridine H atoms omitted for clarity; (b) the perspective view of the skeleton structure of ZU-61 and ZU-100; (c) the skeleton structure of ZU-61 and ZU-100 viewed along the c axis, the F–F and H–H distance of the two structures (Color code: F red; C and H gray; Ni purple; Nb and Ti cyan; O green; N blue).
Fig.2  (a) Single-component adsorption isotherms of C2H2 (red) and CO2 (blue) on ZU-61 and ZU-100 at 298 K; (b) the comparison of C2H2 capacity and C2H2/CO2 uptake ratio at 1 bar and 298 K with other materials; (c) ideal adsorbed solution theory (IAST) calculations of C2H2/CO2 (50/50, v/v) adsorption selectivity for ZU-61 and ZU-100; (d) calculated C2H2 adsorption isotherms from C2H2/CO2 (50/50, v/v) mixtures at 298 K [3436,39]; (e) calculated isosteric heats of adsorption for C2H2 at different C2H2 loadings on ZU-61 and ZU-100; (f) the comparison of Qst (isosteric heats of adsorption) among ZU-61, ZU-100 and other materials.
Fig.3  Experimental dynamic breakthrough curves for C2H2/CO2 (50/50, v/v) separations with (a) ZU-61 and (b) ZU-100 at 298 K and 1 bar (mixed gas flow: 2 mL·min–1); (c) the comparison of dynamic C2H2 capacities between ZU-61, ZU-100 and some other representative MOFs; (d) cycle breakthrough tests for C2H2/CO2 (50/50, v/v) separation with ZU-61 and ZU-100.
Fig.4  Schematic pictures showing the DFT optimized (a) C2H2 and (b) CO2 adsorption con?gurations and the distances between atoms in ZU-100 (Color code: F red; Ni and O purple; Nb and Ti cyan; N blue; C orange; H white).
1 A Luna-Triguero, J M Vicent-Luna, R M Madero-Castro, P Gomez-Alvarez, S Calero. Acetylene storage and separation using metal-organic frameworks with open metal sites. ACS Applied Materials & Interfaces, 2019, 11( 34): 31499– 31507
https://doi.org/10.1021/acsami.9b09010
2 R Matsuda, R Kitaura, S Kitagawa, Y Kubota, R V Belosludov, T Kobayashi, H Sakamoto, T Chiba, M Takata, Y Kawazoe, Y Mita. Highly controlled acetylene accommodation in a metal−organic microporous material. Nature, 2005, 436( 7048): 238– 241
https://doi.org/10.1038/nature03852
3 S Xiang, W Zhou, J M Gallegos, Y Liu, B L Chen. Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. Journal of the American Chemical Society, 2009, 131( 34): 12415– 12419
https://doi.org/10.1021/ja904782h
4 M L Foo, R Matsuda, Y Hijikata, R Krishna, H Sato, S Horike, A Hori, J Duan, Y Sato, Y Kubota, M Takata, S Kitagawa. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. Journal of the American Chemical Society, 2016, 138( 9): 3022– 3030
https://doi.org/10.1021/jacs.5b10491
5 Y Peng, T Pham, P Li, T Wang, Y Chen, K J Chen, K A Forrest, B Space, P Cheng, M J Zaworotko, Z Zhang. Robust ultramicroporous metal−organic frameworks with benchmark affinity for acetylene. Angewandte Chemie International Edition, 2018, 57( 34): 10971– 10975
https://doi.org/10.1002/anie.201806732
6 Z Yao, Z Zhang, L Liu, Z Li, W Zhou, Y Zhao, Y Han, B Chen, R Krishna, S Xiang. Extraordinary separation of acetylene-containing mixtures with microporous metal−organic frameworks with open O donor sites and tunable robustness through control of the helical chain secondary building units. Chemistry, 2016, 22( 16): 5676– 5683
https://doi.org/10.1002/chem.201505107
7 H S Scott, M Shivanna, A Bajpai, D G Madden, K J Chen, T Pham, K A Forrest, A Hogan, B Space, J J IV Perry, M J Zaworotko. Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material. ACS Applied Materials & Interfaces, 2017, 9( 39): 33395– 33400
https://doi.org/10.1021/acsami.6b15250
8 P Li, Y He, Y Zhao, L Weng, H Wang, R Krishna, H Wu, W Zhou, M O’Keeffe, Y Han, B Chen. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angewandte Chemie International Edition, 2015, 54( 2): 574– 577
9 L Zhang, K Jiang, J Zhang, J Pei, K Shao, Y Cui, Y Yang, B Li, B Chen, G Qian. Low-cost and high-performance microporous metal−organic framework for separation of acetylene from carbon dioxide. ACS Sustainable Chemistry & Engineering, 2019, 7( 1): 1667– 1672
https://doi.org/10.1021/acssuschemeng.8b05431
10 J Zhang, X Chen. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. Journal of the American Chemical Society, 2009, 131( 15): 5516– 5521
https://doi.org/10.1021/ja8089872
11 O Qazvini, R Babarao, S Telfer. Multipurpose metal-organic framework for the adsorption of acetylene: ethylene purification and carbon dioxide removal. Chemistry of Materials, 2019, 31( 13): 4919– 4926
https://doi.org/10.1021/acs.chemmater.9b01691
12 F Moreau, I da Silva, N Al Smail, T Easun, M Savage, M Godfrey, S Parker, P Manuel, S Yang, M Schroder. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal−organic framework. Nature Communications, 2017, 8( 1): 14085
https://doi.org/10.1038/ncomms14085
13 Y Zhang, J Hu, R Krishna, L Wang, L Yang, X Cui, S Duttwyler, H Xing. Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene. Angewandte Chemie International Edition, 2020, 59( 40): 17664– 17669
https://doi.org/10.1002/anie.202007681
14 R Liu, Q Liu, R Krishna, W Wang, C He, Y Wang. Water-stable europium 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene framework for efficient C2H2/CO2 separation. Inorganic Chemistry, 2019, 58( 8): 5089– 5095
https://doi.org/10.1021/acs.inorgchem.9b00169
15 Y Xie, H Cui, H Wu, R Lin, W Zhou, B Chen. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angewandte Chemie International Edition, 2021, 60( 17): 9604– 9609
https://doi.org/10.1002/anie.202100584
16 J Wang, Y Zhang, Y Su, X Liu, P Zhang, R Lin, S Chen, Q Deng, Z Zeng, S Deng, B Chen. Fine pore engineering in a series of isoreticular metal−organic frameworks for efficient C2H2/CO2 separation. Nature Communications, 2022, 13( 1): 200
https://doi.org/10.1038/s41467-021-27929-7
17 O Qazvini, R Babarao, S Telfer. Selective capture of carbon dioxide from hydrocarbons using a metal−organic framework. Nature Communications, 2021, 12( 1): 197
https://doi.org/10.1038/s41467-020-20489-2
18 D Choi, D Kim, D Kang, M Kang, Y Chae, C Hong. Highly selective CO2 separation from a CO2/C2H2 mixture using a diamine-appended metal−organic framework. Angewandte Chemie International Edition, 2021, 9( 37): 21424– 21428
19 Y Shi, Y Xie, H Cui, Y Ye, H Wu, W Zhou, H Arman, R Lin, B Chen. Highly selective adsorption of carbon dioxide over acetylene in an ultramicroporous metal−organic framework. Advanced Materials, 2021, 33( 45): 2105880
https://doi.org/10.1002/adma.202105880
20 Y Ye, S Xian, H Cui, K Tan, L Gong, B Liang, T Pham, H Pandey, R Krishna, P Lan, K A Forrest, B Space, T Thonhauser, J Li, S Ma. Metal−organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. Journal of the American Chemical Society, 2022, 144( 4): 1681– 1689
https://doi.org/10.1021/jacs.1c10620
21 Q Dong, X Zhang, S Liu, R Lin, Y Guo, Y Ma, A Yonezu, R Krishna, G Liu, J Duan, R Matsuda, W Jin, B Chen. Tuning gate-opening of a flexible metal−organic framework for ternary gas sieving separation. Angewandte Chemie International Edition, 2020, 59( 50): 22756– 22762
https://doi.org/10.1002/anie.202011802
22 W Fan, S Yuan, W Wang, L Feng, X Liu, X Zhang, X Wang, Z Kang, F Dai, D Yuan, D Sun, H C Zhou. Optimizing multivariate metal−organic frameworks for efficient C2H2/CO2 separation. Journal of the American Chemical Society, 2020, 142( 19): 8728– 8737
https://doi.org/10.1021/jacs.0c00805
23 J Pei, K Shao, J Wang, H Wen, Y Yang, Y Cui, R Krishna, B Li, G Qian. A chemically stable hofmann-type metal−organic framework with sandwich-like binding sites for benchmark acetylene capture. Advanced Materials, 2020, 32( 24): 1908275
https://doi.org/10.1002/adma.201908275
24 S Mukherjee, Y He, D Franz, S Wang, W Xian, A Bezrukov, B Space, Z Xu, J He, M Zaworotko. Halogen-C2H2 binding in ultramicroporous metal−organic frameworks (MOFs) for benchmark C2H2/CO2 separation selectivity. Chemistry, 2020, 26( 22): 4923– 4929
https://doi.org/10.1002/chem.202000008
25 N Kumar, S Mukherjee, N Harvey-Reid, A Bezrukov, K Tan, V Martins, M Vandichel, T Pham, L van Wyk, K Oyekan, A Kumar, K A Forrest, K M Patil, L J Barbour, B Space, Y Huang, P E Kruger, M J Zaworotko. Breaking the trade-off between selectivity and adsorption capacity for gas separation. Chem, 2021, 7( 11): 3085– 3098
https://doi.org/10.1016/j.chempr.2021.07.007
26 L Yang, L Yan, Y Wang, Z Liu, J He, Q Fu, D Liu, X Gu, P Dai, L Li, X Zhao. Adsorption site selective occupation strategy within a metal−organic framework for highly efficient sieving acetylene from carbon dioxide. Angewandte Chemie International Edition, 2021, 60( 9): 4570– 4574
https://doi.org/10.1002/anie.202013965
27 F Luo, C Yan, L Dang, R Krishna, W Zhou, H Wu, X Dong, Y Han, T L Hu, M O’Keeffe, L Wang, M Luo, R B Lin, B Chen. UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. Journal of the American Chemical Society, 2016, 138( 17): 5678– 5684
https://doi.org/10.1021/jacs.6b02030
28 L Zhang, K Jiang, L Yang, L Li, E Hu, L Yang, K Shao, H Xing, Y Cui, Y Yang, B Li, B Chen, G Qian. Benchmark C2H2/CO2 separation in an ultra-microporous metal−organic framework via copper(I)-alkynyl chemistry. Angewandte Chemie International Edition, 2021, 60( 29): 15995– 16002
https://doi.org/10.1002/anie.202102810
29 K J Chen, H Scott, D Madden, T Pham, A Kumar, A Bajpai, M Lusi, K Forrest, B Space, J IV Perry, M J Zaworotko. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem, 2016, 1( 5): 753– 765
https://doi.org/10.1016/j.chempr.2016.10.009
30 M D Jiang, X L Cui, L F Yang, Q W Yang, Z Q Zhang, Y W Yang, H B Xing. A thermostable anion-pillared metal−organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chemical Engineering Journal, 2018, 352 : 803– 810
https://doi.org/10.1016/j.cej.2018.07.104
31 X Cui, K Chen, H Xing, Q Yang, R Krishna, Z Bao, H Wu, W Zhou, X Dong, Y Han, B Li, Q Ren, M J Zaworotko, B Chen. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353( 6295): 141– 144
https://doi.org/10.1126/science.aaf2458
32 P Nugent, Y Belmabkhout, S Burd, A Cairns, R Luebke, K Forrest, T Pham, S Ma, B Space, L Wojtas, M Eddaoudi, M J Zaworotko. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495( 7439): 80– 84
https://doi.org/10.1038/nature11893
33 X Cui, Z Niu, C Shan, L Yang, J Hu, Q Wang, P C Lan, Y Li, L Wojtas, S Ma, H Xing. Efficient separation of xylene isomers by a guest-responsive metal−organic framework with rotational anionic sites. Nature Communications, 2020, 11( 1): 5456
https://doi.org/10.1038/s41467-020-19209-7
34 R B Lin, L Li, H Wu, H Arman, B Li, R G Lin, W Zhou, B Chen. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. Journal of the American Chemical Society, 2017, 139( 23): 8022– 8028
https://doi.org/10.1021/jacs.7b03850
35 J Lee, C Y Chuah, J Kim, Y Kim, N Ko, Y Seo, K Kim, T H Bae, E Lee. Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal−organic framework with aligned imidazolium groups inside the channels. Angewandte Chemie International Edition, 2018, 57( 26): 7869– 7873
https://doi.org/10.1002/anie.201804442
36 Y Ye, Z Ma, R B Lin, R Krishna, W Zhou, Q Lin, Z Zhang, S Xiang, B Chen. Pore space partition within a metal−organic framework for highly efficient C2H2/CO2 separation. Journal of the American Chemical Society, 2019, 141( 9): 4130– 4136
https://doi.org/10.1021/jacs.9b00232
37 Y Li, Y Wang, Y Xue, H Li, Q Zhai, S Li, Y Jiang, M Hu, X Bu. Ultramicroporous building units as a path to bi-microporous metal−organic frameworks with high acetylene storage and separation performance. Angewandte Chemie International Edition, 2019, 58( 38): 13590– 13595
https://doi.org/10.1002/anie.201908378
38 Z Niu, X Cui, T Pham, G Verma, P Lan, C Shan, H Xing, K Forrest, S Suepaul, B Space, A Nafady, A M Al-Enizi, S Ma. A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation. Angewandte Chemie International Edition, 2021, 60( 10): 5283– 5288
39 J Duan, W Jin, R Krishna. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorganic Chemistry, 2015, 54( 9): 4279– 4284
https://doi.org/10.1021/ic5030058
40 Q Qian, X Gu, J Pei, H Wen, H Wu, W Zhou, B Li, G Qian. A novel anion-pillared metal−organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9( 14): 9248– 9255
https://doi.org/10.1039/D0TA11340A
41 H Li, C Liu, C Chen, Z Di, D Yuan, J Pang, W Wei, M Wu, M Hong. An unprecedented pillar-cage fluorinated hybrid porous framework with highly efficient acetylene storage and separation. Angewandte Chemie International Edition, 2021, 60( 14): 7547– 7552
https://doi.org/10.1002/anie.202013988
42 Z Zhang, X Cui, X Jiang, Q Ding, J Cui, Y Zhang, Y Belmabkhout, K Adil, M Eddaoudi, H Xing. Efficient splitting of trans-/cis-olefins using an anion-pillared ultramicroporous metal−organic framework with guest-adaptive pore channels. Engineering, 2022, 11 : 80– 86
https://doi.org/10.1016/j.eng.2021.10.013
[1] FCE-22011-OF-LY_suppl_1 Download
[1] Fadina Amran, Muhammad Abbas Ahmad Zaini. Beta-cyclodextrin adsorbents to remove water pollutants—a commentary[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1407-1423.
[2] Yuyao Han, Lei Xia, Xupin Zhuang, Yuxia Liang. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1387-1398.
[3] Zhipeng Qie, Lijie Wang, Fei Sun, Huan Xiang, Hua Wang, Jihui Gao, Guangbo Zhao, Xiaolei Fan. Tuning porosity of coal-derived activated carbons for CO2 adsorption[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1345-1354.
[4] Jinjian Hou, Jinze Du, Hong Sui, Lingyu Sun. A review on the application of nanofluids in enhanced oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1165-1197.
[5] Xuesong Lu, Xiaojiao Luo, Warren A. Thompson, Jeannie Z.Y. Tan, M. Mercedes Maroto-Valer. Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1149-1163.
[6] Ajendra Kumar Vats, Pritha Roy, Linjun Tang, Shuzi Hayase, Shyam S. Pandey. Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1060-1078.
[7] Juan Shen, Fang Cao, Siqi Liu, Congjun Wang, Rigui Chen, Ke Chen. Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite[J]. Front. Chem. Sci. Eng., 2022, 16(3): 408-419.
[8] Wenlong Zhang, Xuyang Zhao, Lin Zhang, Jinwei Zhu, Shanshan Li, Ping Hu, Jiangtao Feng, Wei Yan. Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1147-1157.
[9] Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
[10] Soheil Bahraminia, Mansoor Anbia, Esmat Koohsaryan. Dehydration of natural gas and biogas streams using solid desiccants: a review[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1050-1074.
[11] Wanyue Liu, Xiaoqin Liu, Jinming Chang, Feng Jiang, Shishi Pang, Hejun Gao, Yunwen Liao, Sheng Yu. Efficient removal of Cr(VI) and Pb(II) from aqueous solution by magnetic nitrogen-doped carbon[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1185-1196.
[12] Fengli Li, Chuang Chen, Yuda Wang, Wenpeng Li, Guoli Zhou, Haoqin Zhang, Jie Zhang, Jingtao Wang. Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(4): 984-997.
[13] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[14] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[15] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed