Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (2) : 123-138    https://doi.org/10.1007/s11705-022-2194-7
REVIEW ARTICLE
Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review
Xuewen Mu1, Yun Xu2, Zheng Wang1(), Dunyun Shi3()
1. School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, China
2. Central Lab, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
3. Institute of Hematology, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
 Download: PDF(8156 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The two-electron cytoplasmic reductase NAD(P)H:quinone oxidoreductase 1 is expressed in many tissues. NAD(P)H:quinone oxidoreductase 1 is well-known for being highly expressed in most cancers. Therefore, it could be a target for cancer therapy. Because it is a quinone reductase, many bioimaging probes based on quinone structures target NAD(P)H:quinone oxidoreductase 1 to diagnose tumours. Its expression is higher in tumours than in normal tissues, and using target drugs such as β-lapachone to reduce side effects in normal tissues can help. However, the physicochemical properties of β-lapachone limit its application. The problem can be solved by using nanosystems to deliver β-lapachone. This mini-review summarizes quinone-based fluorescent, near-infrared and two-photon fluorescent probes, as well as nanosystems for delivering the NAD(P)H:quinone oxidoreductase 1-activating drug β-lapachone. This review provides valuable information for the future development of probes and nano-delivery systems that target NAD(P)H:quinone oxidoreductase 1.

Keywords NAD(P)H:quinone oxidoreductase 1      cancer therapy      target      probe      nanosystem     
Corresponding Author(s): Zheng Wang,Dunyun Shi   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 09 October 2022    Issue Date: 27 February 2023
 Cite this article:   
Xuewen Mu,Yun Xu,Zheng Wang, et al. Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review[J]. Front. Chem. Sci. Eng., 2023, 17(2): 123-138.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2194-7
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I2/123
Fig.1  Diverse functions of NQO1. Reprinted with permission from Ref. [2], copyright 2017, Ross and Siegel.
Fig.2  An NIR probe provides high-fidelity detection and visualisation of endogenous intracellular NAD(P)H quinone reductase activity in two- and three-dimensional cancer cell cultures, as well as an in vivo preclinical model of peritoneally disseminated ovarian cancer. Reprinted with permission from Ref. [53], copyright 2017, American Chemical Society.
Fig.3  Mechanism of naphthoquinone trigger group-based NQO1 activity. Reprinted with permission from Ref. [54], copyright 2021, Elsevier.
Fig.4  Proposed drug release mechanism. Reprinted with permission from Ref. [68], copyright 2016, American Chemical Society.
Fig.5  Structures of NQO1-bioactivated anticancer compounds.
Fig.6  Up-regulation of NQO1 to enhance the effect of LPC.
Fig.7  Schematic representation of an oxidation-responsive prodrug-based nanosystem with sequential and synergistically facilitated drug release. Reprinted with permission from Ref. [88], copyright 2019, American Chemical Society.
Fig.8  Illustration of the acidic-triggered lysosome-escape PLP-NPs for MDR Colorectal cancer treatment with self-amplifiable drug release. Reprinted with permission from Ref. [92], copyright 2020, the Author(s).
Fig.9  Illustration of a cascade amplification release nanoparticle and its sequential release process. Reprinted with permission from Ref. [94], copyright 2017, John Wiley and Sons.
Fig.10  Formation of iron(II, III)-HSA@Lapa NPs and the mechanism of collaborative enhancement of chemodynamic therapeutic efficacy based on glutathione depletion and Fenton reactions. Reprinted with permission from Ref. [102], copyright 2019, American Chemical Society.
Fig.11  Formation of the ZIF67/O1a/LPC NPs and the mechanism of collaborative enhancement of chemodynamic therapeutic efficacy based on sustained NQO1-mediated hydrogen peroxide production caused by the synergy between LPC and Ola (PARPi). Reprinted with permission from Ref. [110], copyright 2021, The Author(s).
Fig.12  Illustration of PLM/PPA/LPC NPs for metastasis inhibition and enhanced cancer therapy. Reprinted with permission from Ref. [121], copyright 2022, Elsevier.
1 G Tedeschi, S Chen, V Massey. DT-diaphorase. Redox potential, steady-state, and rapid reaction studies. Journal of Biological Chemistry, 1995, 270( 3): 11981204
2 D Ross, D Siegel. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Frontiers in Physiology, 2017, 8 : 595
https://doi.org/10.3389/fphys.2017.00595
3 S Hosoda, W Nakamura, K Hayashi. Properties and reaction mechanism of DT diaphorase from rat liver. Journal of Biological Chemistry, 1974, 249( 20): 6416– 6423
https://doi.org/10.1016/S0021-9258(19)42173-X
4 R Li, M A Bianchet, P Talalay, L M Amzel. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92( 19): 8846– 8850
https://doi.org/10.1073/pnas.92.19.8846
5 D Ross, J K Kepa, S L Winski, H D Beall, A Anwar, D Siegel. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chemico-Biological Interactions, 2000, 129( 1–2): 77– 97
https://doi.org/10.1016/S0009-2797(00)00199-X
6 D Siegel, D L Gustafson, D L Dehn, J Y Han, P Boonchoong, L J Berliner, D Ross. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Molecular Pharmacology, 2004, 65( 5): 1238– 1247
https://doi.org/10.1124/mol.65.5.1238
7 R E Beyer, J Segura-Aguilar, S Di Bernardo, M Cavazzoni, R Fato, D Fiorentini, M C Galli, M Setti, L Landi, G Lenaz. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93( 6): 2528– 2532
https://doi.org/10.1073/pnas.93.6.2528
8 D C Liebler. The role of metabolism in the antioxidant function of vitamin E. Critical Reviews in Toxicology, 1993, 23( 2): 147– 169
https://doi.org/10.3109/10408449309117115
9 A Bindoli, M Valente, L Cavallini. Inhibition of lipid peroxidation by alpha-tocopherolquinone and α-tocopherol-hydroquinone. Biochemistry International, 1985, 10( 5): 753– 761
10 I Kohar M Baca C Suarna R Stocker P T Southwell-Keely. Is α-tocopherol a reservoir for α-tocopheryl hydroquinone? Free Radical Biology & Medicine, 1995, 19( 2): 197– 207
11 D Siegel, E M Bolton, J A Burr, D C Liebler, D Ross. The reduction of alpha-tocopherolquinone by human NAD(P)H:quinone oxidoreductase: the role of alpha-tocopherol hydroquinone as a cellular antioxidant. Molecular Pharmacology, 1997, 52( 2): 300– 305
https://doi.org/10.1124/mol.52.2.300
12 D Ross. Quinone reductases multitasking in the metabolic world. Drug Metabolism Reviews, 2004, 36( 3–4): 639– 654
https://doi.org/10.1081/DMR-200033465
13 H Zhu, Y Li. NAD(P)H:quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovascular Toxicology, 2012, 12( 1): 39– 45
https://doi.org/10.1007/s12012-011-9136-9
14 H Zhu, Z Jia, J E Mahaney, D Ross, H P Misra, M A Trush, Y Li. The highly expressed and inducible endogenous NAD(P)H:quinone oxidoreductase 1 in cardiovascular cells acts as a potential superoxide scavenger. Cardiovascular Toxicology, 2007, 7( 3): 202– 211
https://doi.org/10.1007/s12012-007-9001-z
15 J M Mccord, I Fridovich. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 1969, 244( 22): 6049– 6055
https://doi.org/10.1016/S0021-9258(18)63504-5
16 D Siegel, D Ross. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radical Biology & Medicine, 2000, 29( 3–4): 246– 253
https://doi.org/10.1016/S0891-5849(00)00310-5
17 E T Oh, H J Park. Implications of NQO1 in cancer therapy. BMB Reports, 2015, 48( 11): 609– 617
https://doi.org/10.5483/BMBRep.2015.48.11.190
18 K Zhang, D Chen, K Ma, X Wu, H Hao, S Jiang. NAD(P)H:quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer. Journal of Medicinal Chemistry, 2018, 61( 16): 6983– 7003
https://doi.org/10.1021/acs.jmedchem.8b00124
19 A J Levine. P53, the cellular gatekeeper for growth and division. Cell, 1997, 88( 3): 323– 331
https://doi.org/10.1016/S0092-8674(00)81871-1
20 G Asher, J Lotem, B Cohen, L Sachs, Y Shaul. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98( 3): 1188– 1193
https://doi.org/10.1073/pnas.98.3.1188
21 G Asher, J Lotem, R Kama, L Sachs, Y Shaul. NQO1 stabilizes p53 through a distinct pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99( 5): 3099– 3104
https://doi.org/10.1073/pnas.052706799
22 G Asher, J Lotem, L Sachs, C Kahana, Y Shaul. MDM-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99( 20): 13125– 13130
https://doi.org/10.1073/pnas.202480499
23 G Asher, Z Bercovich, P Tsvetkov, Y Shaul, C Kahana. 20s proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Molecular Cell, 2005, 17( 5): 645– 655
https://doi.org/10.1016/j.molcel.2005.01.020
24 B S Cornblatt, L Ye, A T Dinkova-Kostova, M Erb, J W Fahey, N K Singh, M S Chen, T Stierer, E Garrett-Mayer, P Argani, N E Davidson, P Talalay, T W Kensler, K Visvanathan. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 2007, 28( 7): 1485– 1490
https://doi.org/10.1093/carcin/bgm049
25 Y J Surh. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 2003, 3( 10): 768– 780
https://doi.org/10.1038/nrc1189
26 J J Schlager, G Powis. Cytosolic NAD(P)H:(quinone-acceptor)oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. International Journal of Cancer, 1990, 45( 3): 403– 409
https://doi.org/10.1002/ijc.2910450304
27 Y Ma, J Kong, G Yan, X Ren, D Jin, T Jin, L Lin, Z Lin. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer, 2014, 14( 1): 414
https://doi.org/10.1186/1471-2407-14-414
28 Y Yang, Y Zhang, Q Wu, X Cui, Z Lin, S Liu, L Chen. Clinical implications of high NQO1 expression in breast cancers. Journal of Experimental & Clinical Cancer Research, 2014, 33( 1): 14
https://doi.org/10.1186/1756-9966-33-14
29 A M Lewis, M Ough, J Du, M S Tsao, L W Oberley, J J Cullen. Targeting NAD(P)H:quinone oxidoreductase (NQO1) in pancreatic cancer. Molecular Carcinogenesis, 2017, 56( 7): 1825– 1834
https://doi.org/10.1002/mc.20199
30 B Madajewski, M A Boatman, G Chakrabarti, D A Boothman, E A Bey. Depleting tumor-NQO1 potentiates anoikis and inhibits growth of NSCLC. Molecular Cancer Research, 2016, 14( 1): 14– 25
https://doi.org/10.1158/1541-7786.MCR-15-0207-T
31 E T Oh, J W Kim, J M Kim, S J Kim, J S Lee, S S Hong, J Goodwin, R J Ruthenborg, M G Jung, H J Lee, C H Lee, E S Park, C Kim, H J Park. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nature Communications, 2016, 7( 1): 13593
https://doi.org/10.1038/ncomms13593
32 M A Moses, H Brem, R Langer. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell, 2003, 4( 5): 337– 341
https://doi.org/10.1016/S1535-6108(03)00276-9
33 H Wagner. Image-guided conformal radiation therapy planning and delivery for non-small-cell lung cancer. Cancer Control, 2003, 10( 4): 277– 288
https://doi.org/10.1177/107327480301000402
34 B J Altman, Z E Stine, C V Dang. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews. Cancer, 2016, 16( 11): 749
https://doi.org/10.1038/nrc.2016.114
35 M K Callahan, M A Postow, J D Wolchok. Targeting T cell co-receptors for cancer therapy. Immunity, 2016, 44( 5): 1069– 1078
https://doi.org/10.1016/j.immuni.2016.04.023
36 N S Awadallah, D Dehn, R J Shah, S Russell Nash, Y K Chen, D Ross, J S Bentz, K R Shroyer. NQO1 expression in pancreatic cancer and its potential use as a biomarker. Applied Immunohistochemistry & Molecular Morphology, 2008, 16( 1): 24– 31
https://doi.org/10.1097/PAI.0b013e31802e91d0
37 A Razgulin, N Ma, J Rao. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chemical Society Reviews, 2011, 40( 7): 4186– 4216
https://doi.org/10.1039/c1cs15035a
38 R Siegel, D Naishadham, A Jemal. Cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 2012, 62( 1): 10– 29
https://doi.org/10.3322/caac.20138
39 Q T Nguyen, E S Olson, T A Aguilera, T Jiang, M Scadeng, L G Ellies, R Y Tsien. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107( 9): 4317– 4322
https://doi.org/10.1073/pnas.0910261107
40 W C Silvers, B Prasai, D H Burk, M L Brown, R L Mccarley. Profluorogenic reductase substrate for rapid, selective, and sensitive visualization and detection of human cancer cells that overexpress nqo1. Journal of the American Chemical Society, 2013, 135( 1): 309– 314
https://doi.org/10.1021/ja309346f
41 R M Duke, E B Veale, F M Pfeffer, P E Kruger, T Gunnlaugsson. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chemical Society Reviews, 2010, 39( 10): 3936– 3953
https://doi.org/10.1039/b910560n
42 X Qian, Y Xiao, Y Xu, X Guo, J Qian, W Zhu. “Alive” dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells. Chemical Communications (Cambridge), 2010, 46( 35): 6418– 6436
https://doi.org/10.1039/c0cc00686f
43 K M Mcmahon, M Volpato, H Y Chi, P Musiwaro, K Poterlowicz, Y Peng, A J Scally, L H Patterson, R M Phillips, C W Sutton. Characterization of changes in the proteome in different regions of 3D multicell tumor spheroids. Journal of Proteome Research, 2012, 11( 5): 2863– 2875
https://doi.org/10.1021/pr2012472
44 M C Cox, L M Reese, L R Bickford, S S Verbridge. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomaterials Science & Engineering, 2015, 1( 10): 877– 894
https://doi.org/10.1021/acsbiomaterials.5b00172
45 J Friedrich, C Seidel, R Ebner, L A Kunz-Schughart. Spheroid-based drug screen: considerations and practical approach. Nature Protocols, 2009, 4( 3): 309– 324
https://doi.org/10.1038/nprot.2008.226
46 M Vinci, S Gowan, F Boxall, L Patterson, M Zimmermann, W Court, C Lomas, M Mendiola, D Hardisson, S A Eccles. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 2012, 10( 1): 29
https://doi.org/10.1186/1741-7007-10-29
47 A L Vahrmeijer, M Hutteman, J R van der Vorst, C J van de Velde, J V Frangioni. Image-guided cancer surgery using near-infrared fluorescence. Nature Reviews. Clinical Oncology, 2013, 10( 9): 507– 518
https://doi.org/10.1038/nrclinonc.2013.123
48 Q T Nguyen, R Y Tsien. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nature Reviews Cancer, 2013, 13( 9): 653– 662
https://doi.org/10.1038/nrc3566
49 S Keereweer, P B van Driel, T J Snoeks, J D Kerrebijn, R J Baatenburg De Jong, A L Vahrmeijer, H J Sterenborg, C W Lowik. Optical image-guided cancer surgery: challenges and limitations. Clinical Cancer Research, 2013, 19( 14): 3745– 3754
https://doi.org/10.1158/1078-0432.CCR-12-3598
50 G M Van Dam, G Themelis, L M Crane, N J Harlaar, R G Pleijhuis, W Kelder, A Sarantopoulos, J S De Jong, H J Arts, A G Van Der Zee, J Bart, P S Low, V Ntziachristos. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nature Medicine, 2011, 17( 10): 1315– 1319
https://doi.org/10.1038/nm.2472
51 H Kobayashi, P L Choyke. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Accounts of Chemical Research, 2011, 44( 2): 83– 90
https://doi.org/10.1021/ar1000633
52 F De Moliner, I Biazruchka, K Konsewicz, S Benson, S Singh, J S Lee, M Vendrell. Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores. Frontiers of Chemical Science and Engineering, 2022, 16( 1): 128– 135
https://doi.org/10.1007/s11705-021-2080-8
53 Z Shen, B Prasai, Y Nakamura, H Kobayashi, M S Jackson, R L Mccarley. A near-infrared, wavelength-shiftable, turn-on fluorescent probe for the detection and imaging of cancer tumor cells. ACS Chemical Biology, 2017, 12( 4): 1121– 1132
https://doi.org/10.1021/acschembio.6b01094
54 Q Gong, F Yang, J Hu, T Li, P Wang, X Li, X Zhang. Rational designed highly sensitive NQO1-activated near-infrared fluorescent probe combined with nqo1 substrates in vivo: an innovative strategy for NQO1-overexpressing cancer theranostics. European Journal of Medicinal Chemistry, 2021, 224 : 113707
https://doi.org/10.1016/j.ejmech.2021.113707
55 M F Mendoza, N M Hollabaugh, S U Hettiarachchi, R L Mccarley. Human NAD(P)H:quinone oxidoreductase type I (hNQO1) activation of quinone propionic acid trigger groups. Biochemistry, 2012, 51( 40): 8014– 8026
https://doi.org/10.1021/bi300760u
56 S R Punganuru, H R Madala, V Arutla, R Zhang, K S Srivenugopal. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Scientific Reports, 2019, 9( 1): 8577
https://doi.org/10.1038/s41598-019-44111-8
57 Z Cheng, W O Valença, G G Dias, J Scott, N D Barth, Moliner F de, G B P Souza, R J Mellanby, M Vendrell, Silva Júnior E N da. Natural product-inspired profluorophores for imaging NQO1 activity in tumour tissues. Bioorganic & Medicinal Chemistry, 2019, 27( 17): 3938– 3946
https://doi.org/10.1016/j.bmc.2019.07.017
58 Z Yuan, M Xu, T Wu, X Zhang, Y Shen, U Ernest, L Gui, F Wang, Q He, H Chen. Design and synthesis of NQO1 responsive fluorescence probe and its application in bio-imaging for cancer diagnosis. Talanta, 2019, 198 : 323– 329
https://doi.org/10.1016/j.talanta.2019.02.009
59 J Zhang, H W Liu, X X Hu, J Li, L H Liang, X B Zhang, W Tan. Efficient two-photon fluorescent probe for nitroreductase detection and hypoxia imaging in tumor cells and tissues. Analytical Chemistry, 2015, 87( 23): 11832– 11839
https://doi.org/10.1021/acs.analchem.5b03336
60 W S Shin, M G Lee, P Verwilst, J H Lee, S G Chi, J S Kim. Mitochondria-targeted aggregation induced emission theranostics: crucial importance of in situ activation. Chemical Science, 2016, 7( 9): 6050– 6059
61 Q Xu, C H Heo, J A Kim, H S Lee, Y Hu, D Kim, K M Swamy, G Kim, S J Nam, H M Kim, J Yoon. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria. Analytical Chemistry, 2016, 88( 12): 6615– 6620
https://doi.org/10.1021/acs.analchem.6b01738
62 Q Xu, C H Heo, G Kim, H W Lee, H M Kim, J Yoon. Development of imidazoline-2-thiones based two-photon fluorescence probes for imaging hypochlorite generation in a co-culture system. Angewandte Chemie International Edition, 2015, 54( 16): 4890– 4894
https://doi.org/10.1002/anie.201500537
63 H M Kim, B R Cho. Small-molecule two-photon probes for bioimaging applications. Chemical Reviews, 2015, 115( 11): 5014– 5055
https://doi.org/10.1021/cr5004425
64 H W Liu, S Xu, P Wang, X X Hu, J Zhang, L Yuan, X B Zhang, W Tan. An efficient two-photon fluorescent probe for monitoring mitochondrial singlet oxygen in tissues during photodynamic therapy. Chemical Communications (Cambridge), 2016, 52( 83): 12330– 12333
https://doi.org/10.1039/C6CC05880A
65 Y Liu, F Meng, L He, X Yu, W Lin. Fluorescence behavior of a unique two-photon fluorescent probe in aggregate and solution states and highly sensitive detection of RNA in water solution and living systems. Chemical Communications (Cambridge), 2016, 52( 57): 8838– 8841
https://doi.org/10.1039/C6CC03746A
66 Z Mao, W Feng, Z Li, L Zeng, W Lv, Z Liu. Nir in, far-red out: developing a two-photon fluorescent probe for tracking nitric oxide in deep tissue. Chemical Science, 2016, 7( 8): 5230– 5235
67 N Kwon, M K Cho, S J Park, D Kim, S J Nam, L Cui, H M Kim, J Yoon. An efficient two-photon fluorescent probe for human NAD(P)H:quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chemical Communications, 2017, 53( 3): 525– 528
https://doi.org/10.1039/C6CC08971B
68 W S Shin, J Han, P Verwilst, R Kumar, J H Kim, J S Kim. Cancer targeted enzymatic theranostic prodrug: precise diagnosis and chemotherapy. Bioconjugate Chemistry, 2016, 27( 5): 1419– 1426
https://doi.org/10.1021/acs.bioconjchem.6b00184
69 N Kaneda, H Nagata, T Furuta, T Yokokura. Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Research, 1990, 50( 6): 1715– 1720
70 M S Bentle, E A Bey, Y Dong, K E Reinicke, D A Boothman. New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. Journal of Molecular Histology, 2006, 37( 5–7): 203– 218
https://doi.org/10.1007/s10735-006-9043-8
71 D A Boothman, D K Trask, A B Pardee. Inhibition of potentially lethal DNA damage repair in human tumor cells by beta-lapachone, an activator of topoisomerase I. Cancer Research, 1989, 49( 3): 605– 612
72 J J Pink, S M Planchon, C Tagliarino, M E Varnes, D Siegel, D A Boothman. NAD(P)H:quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. Journal of Biological Chemistry, 2000, 275( 8): 5416– 5424
https://doi.org/10.1074/jbc.275.8.5416
73 S M Planchon, J J Pink, C Tagliarino, W G Bornmann, M E Varnes, D A Boothman. β-Lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3. Experimental Cell Research, 2001, 267( 1): 95– 106
https://doi.org/10.1006/excr.2001.5234
74 M Ough, A Lewis, E A Bey, J Gao, J M Ritchie, W Bornmann, D A Boothman, L W Oberley, J J Cullen. Efficacy of β-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biology & Therapy, 2005, 4( 1): 95– 102
https://doi.org/10.4161/cbt.4.1.1382
75 M S Beg, X Huang, M A Silvers, D E Gerber, J Bolluyt, V Sarode, F Fattah, R J Deberardinis, M E Merritt, X J Xie, R Leff, D Laheru, D A Boothman. Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer. Journal of Surgical Oncology, 2017, 116( 1): 83– 88
https://doi.org/10.1002/jso.24624
76 S Zada, J S Hwang, M Ahmed, T H Lai, T M Pham, D H Kim, D R Kim. Protein kinase a activation by beta-lapachone is associated with apoptotic cell death in NQO1overexpressing breast cancer cells. Oncology Reports, 2019, 42( 4): 1621– 1630
77 C W Song, J J Chae, E K Choi, T S Hwang, C Kim, B U Lim, H J Park. Anti-cancer effect of bio-reductive drug β-lapachon is enhanced by activating NQO1 with heat shock. International Journal of Hyperthermia, 2008, 24( 2): 161– 169
https://doi.org/10.1080/02656730701781895
78 H J Park E K Choi J Choi K J Ahn E J Kim I M Ji Y H Kook S D Ahn B Williams R Griffin D A Boothman C K Lee C W Song. Heat-induced up-regulation of NAD(P)H:quinone oxidoreductase potentiates anticancer effects of β-lapachone . Clinical Cancer Research, 2005, 11(24 Pt 1): 8866- 8871
79 M Suzuki, M Amano, J Choi, H J Park, B W Williams, K Ono, C W Song. Synergistic effects of radiation and β-lapachone in DU-145 human prostate cancer cells in vitro. Radiation Research, 2006, 165( 5): 525– 531
https://doi.org/10.1667/RR3554.1
80 E K Choi, K Terai, I M Ji, Y H Kook, K H Park, E T Oh, R J Griffin, B U Lim, J S Kim, D S Lee, D A Boothman, M Loren, C W Song, H J Park. Upregulation of NAD(P)H:Quinone oxidoreductase by radiation potentiates the effect of bioreductive β-lapachone on cancer cells. Neoplasia, 2007, 9( 8): 634– 642
https://doi.org/10.1593/neo.07397
81 L S Li, S Reddy, Z H Lin, S Liu, H Park, S G Chun, W G Bornmann, J Thibodeaux, J Yan, G Chakrabarti, X J Xie, B D Sumer, D A Boothman, J S Yordy. NQO1-mediated tumor-selective lethality and radiosensitization for head and neck cancer. Molecular Cancer Therapeutics, 2016, 15( 7): 1757– 1767
https://doi.org/10.1158/1535-7163.MCT-15-0765
82 M J Lamberti, N B Vittar, C Da Silva Fde, V F Ferreira, V A Rivarola. Synergistic enhancement of antitumor effect of β-lapachone by photodynamic induction of quinone oxidoreductase (NQO1). Phytomedicine, 2013, 20( 11): 1007– 1012
https://doi.org/10.1016/j.phymed.2013.04.018
83 M J Lamberti, A B Morales Vasconsuelo, M Chiaramello, V F Ferreira, M Macedo Oliveira, S Baptista Ferreira, V A Rivarola, N B Rumie Vittar. NQO1 induction mediated by photodynamic therapy synergizes with β-lapachone-halogenated derivative against melanoma. Biomedicine and Pharmacotherapy, 2018, 108 : 1553– 1564
https://doi.org/10.1016/j.biopha.2018.09.159
84 N Nasongkla, A F Wiedmann, A Bruening, M Beman, D Ray, W G Bornmann, D A Boothman, J Gao. Enhancement of solubility and bioavailability of β-lapachone using cyclodextrin inclusion complexes. Pharmaceutical Research, 2003, 20( 10): 1626– 1633
https://doi.org/10.1023/A:1026143519395
85 E Blanco, E A Bey, C Khemtong, S G Yang, J Setti-Guthi, H Chen, C W Kessinger, K A Carnevale, W G Bornmann, D A Boothman, J Gao. β-Lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Research, 2010, 70( 10): 3896– 3904
https://doi.org/10.1158/0008-5472.CAN-09-3995
86 D Zhang, J Yang, J Guan, B Yang, S Zhang, M Sun, R Yang, T Zhang, R Zhang, Q Kan, H Zhang, Z He, L Shang, J Sun. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Biomaterials Science, 2018, 6( 9): 2360– 2374
https://doi.org/10.1039/C8BM00548F
87 M Li, L Zhao, T Zhang, Y Shu, Z He, Y Ma, D Liu, Y Wang. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pharmaceutica Sinica. B, 2019, 9( 2): 421– 432
https://doi.org/10.1016/j.apsb.2018.08.008
88 K Wang, B Yang, H Ye, X Zhang, H Song, X Wang, N Li, L Wei, Y Wang, H Zhang, Q Kan, Z He, D Wang, J Sun. Self-strengthened oxidation-responsive bioactivating prodrug nanosystem with sequential and synergistically facilitated drug release for treatment of breast cancer. ACS Applied Materials & Interfaces, 2019, 11( 21): 18914– 18922
https://doi.org/10.1021/acsami.9b03056
89 M Ganesan, G Kanimozhi, B Pradhapsingh, H A Khan, A S Alhomida, A Ekhzaimy, G R Brindha, N R Prasad. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomedicine and Pharmacotherapy, 2021, 139 : 111632
https://doi.org/10.1016/j.biopha.2021.111632
90 Y Yan, C J Ochs, G K Such, J K Heath, E C Nice, F Caruso. Bypassing multidrug resistance in cancer cells with biodegradable polymer capsules. Advanced Materials, 2010, 22( 47): 5398– 5403
https://doi.org/10.1002/adma.201003162
91 L Che, Z Liu, D Wang, C Xu, C Zhang, J Meng, J Zheng, H Yuan, G Zhao, X Zhou. Computer-assisted engineering of programmed drug releasing multilayer nanomedicine via indomethacin-mediated ternary complex for therapy against a multidrug resistant tumor. Acta Biomaterialia, 2019, 97 : 461– 473
https://doi.org/10.1016/j.actbio.2019.07.033
92 N Chang, Y Zhao, N Ge, L Qian. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Delivery, 2020, 27( 1): 1073– 1086
https://doi.org/10.1080/10717544.2020.1797238
93 Q Li, W Hou, M Li, H Ye, H Li, Z Wang. Ultrasound combined with core cross-linked nanosystem for enhancing penetration of doxorubicin prodrug/beta-lapachone into tumors. International Journal of Nanomedicine, 2020, 15 : 4825– 4845
https://doi.org/10.2147/IJN.S251277
94 M Ye, Y Han, J Tang, Y Piao, X Liu, Z Zhou, J Gao, J Rao, Y Shen. A tumor-specific cascade amplification drug release nanoparticle for overcoming multidrug resistance in cancers. Advanced Materials, 2017, 29( 38): 1702342
https://doi.org/10.1002/adma.201702342
95 Z Tang, H Zhang, Y Liu, D Ni, H Zhang, J Zhang, Z Yao, M He, J Shi, W Bu. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Advanced Materials, 2017, 29( 47): 1701683
https://doi.org/10.1002/adma.201701683
96 Y Dai, Z Yang, S Cheng, Z Wang, R Zhang, G Zhu, Z Wang, B C Yung, R Tian, O Jacobson, C Xu, Q Ni, J Song, X Sun, G Niu, X Chen. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Advanced Materials, 2018, 30( 8): 1704877
https://doi.org/10.1002/adma.201704877
97 M Huo, L Wang, Y Chen, J Shi. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8( 1): 357
https://doi.org/10.1038/s41467-017-00424-8
98 M Liu, Y Xu, Y Zhao, Z Wang, D Shi. Hydroxyl radical-involved cancer therapy via fenton reactions. Frontiers of Chemical Science and Engineering, 2022, 16( 3): 345– 363
https://doi.org/10.1007/s11705-021-2077-3
99 M Zhang, X Qin, Z Zhao, Q Du, Q Li, Y Jiang, Y Luan. A self-amplifying nanodrug to manipulate the janus-faced nature of ferroptosis for tumor therapy. Nanoscale Horizons, 2022, 7( 2): 198– 210
https://doi.org/10.1039/D1NH00506E
100 Z Chen, J J Yin, Y T Zhou, Y Zhang, L Song, M Song, S Hu, N Gu. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6( 5): 4001– 4012
https://doi.org/10.1021/nn300291r
101 L Gao, J Zhuang, L Nie, J Zhang, Y Zhang, N Gu, T Wang, J Feng, D Yang, S Perrett, X Yan. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2( 9): 577– 583
https://doi.org/10.1038/nnano.2007.260
102 Q Chen, J Zhou, Z Chen, Q Luo, J Xu, G Song. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a fenton nanoagent for enhanced chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11( 34): 30551– 30565
https://doi.org/10.1021/acsami.9b09323
103 H Tian, M Zhang, G Jin, Y Jiang, Y Luan. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. Journal of Colloid and Interface Science, 2021, 587 : 358– 366
https://doi.org/10.1016/j.jcis.2020.12.028
104 D Peer, J M Karp, S Hong, O C Farokhzad, R Margalit, R Langer. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2( 12): 751– 760
https://doi.org/10.1038/nnano.2007.387
105 E E Connor, J Mwamuka, A Gole, C J Murphy, M D Wyatt. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1( 3): 325– 327
https://doi.org/10.1002/smll.200400093
106 G Han, P Ghosh, V M Rotello. Functionalized gold nanoparticles for drug delivery. Nanomedicine, 2007, 2( 1): 113– 123
https://doi.org/10.2217/17435889.2.1.113
107 S Y Jeong, S J Park, S M Yoon, J Jung, H N Woo, S L Yi, S Y Song, H J Park, C Kim, J S Lee, J S Lee, E K Choi. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization. Journal of Controlled Release, 2009, 139( 3): 239– 245
https://doi.org/10.1016/j.jconrel.2009.07.007
108 E A Bey, M S Bentle, K E Reinicke, Y Dong, C R Yang, L Girard, J D Minna, W G Bornmann, J Gao, D A Boothman. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by β-lapachone. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104( 28): 11832– 11837
https://doi.org/10.1073/pnas.0702176104
109 X Huang, E A Motea, Z R Moore, J Yao, Y Dong, G Chakrabarti, J A Kilgore, M A Silvers, P L Patidar, A Cholka, F Fattah, Y Cha, G G Anderson, R Kusko, M Peyton, J Yan, X J Xie, V Sarode, N S Williams, J D Minna, M Beg, D E Gerber, E A Bey, D A Boothman. Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase inhibitors. Cancer Cell, 2016, 30( 6): 940– 952
https://doi.org/10.1016/j.ccell.2016.11.006
110 L Zhou, J Chen, Y Sun, K Chai, Z Zhu, C Wang, M Chen, W Han, X Hu, R Li, T Yao, H Li, C Dong, S Shi. A self-amplified nanocatalytic system for achieving “1 + 1 + 1 > 3” chemodynamic therapy on triple negative breast cancer. Journal of Nanobiotechnology, 2021, 19( 1): 261
https://doi.org/10.1186/s12951-021-00998-y
111 L Zhang, Z Chen, K Yang, C Liu, J Gao, F Qian. β-Lapachone and paclitaxel combination micelles with improved drug encapsulation and therapeutic synergy as novel nanotherapeutics for NQO1-targeted cancer therapy. Molecular Pharmaceutics, 2015, 12( 11): 3999– 4010
https://doi.org/10.1021/acs.molpharmaceut.5b00448
112 X Li, X Jia, H Niu. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. International Journal of Nanomedicine, 2018, 13 : 4107– 4119
https://doi.org/10.2147/IJN.S163929
113 X Dong, H J Liu, H Y Feng, S C Yang, X L Liu, X Lai, Q Lu, J F Lovell, H Z Chen, C Fang. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion. Nano Letters, 2019, 19( 2): 997– 1008
https://doi.org/10.1021/acs.nanolett.8b04236
114 C Chu, X Lyu, Z Wang, H Jin, S Lu, D Xing, X Hu. Cocktail polyprodrug nanoparticles concurrently release cisplatin and peroxynitrite-generating nitric oxide in cisplatin-resistant cancers. Chemical Engineering Journal, 2020, 402 : 126125
https://doi.org/10.1016/j.cej.2020.126125
115 K Zhang, H Xu, X Jia, Y Chen, M Ma, L Sun, H Chen. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10( 12): 10816– 10828
https://doi.org/10.1021/acsnano.6b04921
116 M Wan, H Chen, Q Wang, Q Niu, P Xu, Y Yu, T Zhu, C Mao, J Shen. Bio-inspired nitric-oxide-driven nanomotor. Nature Communications, 2019, 10( 1): 966
https://doi.org/10.1038/s41467-019-08670-8
117 L Qin, H Gao. The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian Journal of Pharmaceutical Sciences, 2019, 14( 4): 380– 390
https://doi.org/10.1016/j.ajps.2018.10.005
118 L B Vong, Y Nagasaki. Nitric oxide nano-delivery systems for cancer therapeutics: advances and challenges. Antioxidants, 2020, 9( 9): 791
https://doi.org/10.3390/antiox9090791
119 J An, Y G Hu, C Li, X L Hou, K Cheng, B Zhang, R Y Zhang, D Y Li, S J Liu, B Liu, D Zhu, Y D Zhao. A pH/ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials, 2020, 230 : 119636
https://doi.org/10.1016/j.biomaterials.2019.119636
120 Z Yuan, C Lin, Y He, B Tao, M Chen, J Zhang, P Liu, K Cai. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano, 2020, 14( 3): 3546– 3562
https://doi.org/10.1021/acsnano.9b09871
121 M Shi, J Zhang, Y Wang, C Peng, H Hu, M Qiao, X Zhao, D Chen. Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials, 2022, 283 : 121448
https://doi.org/10.1016/j.biomaterials.2022.121448
122 J Lee, E T Oh, H Yoon, C W Kim, Y Han, J Song, H Jang, H J Park, C Kim. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale, 2017, 9( 20): 6901– 6909
https://doi.org/10.1039/C7NR00808B
123 S R Gayam, P Venkatesan, Y M Sung, S Y Sung, S H Hu, H Y Hsu, S P Wu. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale, 2016, 8( 24): 12307– 12317
https://doi.org/10.1039/C6NR03525F
[1] Ahui Qin, Yan Zhang, Shuai Gong, Mingxin Li, Yu Gao, Xu Xu, Jie Song, Zhonglong Wang, Shifa Wang. A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine in real water samples and its bioimaging in vivo andin vitro[J]. Front. Chem. Sci. Eng., 2023, 17(1): 24-33.
[2] Mengying Liu, Yun Xu, Yanjun Zhao, Zheng Wang, Dunyun Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions[J]. Front. Chem. Sci. Eng., 2022, 16(3): 345-363.
[3] Xi-Le Hu, Hui-Qi Gan, Fan-De Meng, Hai-Hao Han, De-Tai Shi, Shu Zhang, Lei Zou, Xiao-Peng He, Tony D. James. Fluorescent probes and functional materials for biomedical applications[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1425-1437.
[4] Yongqing Zhou, Xin Wang, Wei Zhang, Bo Tang, Ping Li. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo[J]. Front. Chem. Sci. Eng., 2022, 16(1): 4-33.
[5] Yan Shi, Fangjun Huo, Yongkang Yue, Caixia Yin. N-Positive ion activated rapid addition and mitochondrial targeting ratiometric fluorescent probes for in vivo cell H2S imaging[J]. Front. Chem. Sci. Eng., 2022, 16(1): 64-71.
[6] Yusheng Xie, Jie Zhang, Liu Yang, Qingxin Chen, Quan Hao, Liang Zhang, Hongyan Sun. A dual-function chemical probe for detecting erasers of lysine lipoylation[J]. Front. Chem. Sci. Eng., 2022, 16(1): 121-127.
[7] Lei Zhou, Yu Chen, Baihao Shao, Juan Cheng, Xin Li. Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide[J]. Front. Chem. Sci. Eng., 2022, 16(1): 34-63.
[8] Mingyue Zhu, Zhenhao Tian, Lingling Jin, Xiaokui Huo, Chao Wang, Jingnan Cui, Yan Tian, Xiangge Tian, Lei Feng. A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living cells and tissues[J]. Front. Chem. Sci. Eng., 2022, 16(1): 103-111.
[9] Beidou Feng, Huiyu Niu, Hongchen Zhai, Congcong Shen, Hua Zhang. In-situ hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA damage[J]. Front. Chem. Sci. Eng., 2022, 16(1): 92-102.
[10] Fabio de Moliner, Ina Biazruchka, Karolina Konsewicz, Sam Benson, Suraj Singh, Jun-Seok Lee, Marc Vendrell. Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores[J]. Front. Chem. Sci. Eng., 2022, 16(1): 128-135.
[11] Xinghong Duo, Lingchuang Bai, Jun Wang, Jintang Guo, Xiangkui Ren, Shihai Xia, Wencheng Zhang, Abraham Domb, Yakai Feng. Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation[J]. Front. Chem. Sci. Eng., 2020, 14(5): 889-901.
[12] Yanlong Hou, Wanni Xie, Zhenya Duan, Jingtao Wang. A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing[J]. Front. Chem. Sci. Eng., 2017, 11(2): 154-165.
[13] Chengyun Huang,Steven E. Rokita. DNA alkylation promoted by an electron-rich quinone methide intermediate[J]. Front. Chem. Sci. Eng., 2016, 10(2): 213-221.
[14] Wei Wang, Bhavitavya Nijampatnam, Sadanandan E. Velu, Ruiwen Zhang. Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy[J]. Front. Chem. Sci. Eng., 2016, 10(1): 1-15.
[15] Han-Wen Cheng,Jin Luo,Chuan-Jian Zhong. SERS nanoprobes for bio-application[J]. Front. Chem. Sci. Eng., 2015, 9(4): 428-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed