Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (3) : 307-313    https://doi.org/10.1007/s11705-022-2216-5
RESEARCH ARTICLE
All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen
Bing Lu(), Zhecheng Zhang, Meiyu Qi, Yuehua Zhang, Hualing Yang, Jin Wang, Yue Ding, Yang Wang, Yong Yao()
College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
 Download: PDF(3225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The storage and controlled release of singlet oxygen (1O2) have attracted increasing attention due to the wide application and microsecond lifetime of 1O2 in water. Herein we provide an integrated nanoplatform consisting of a diphenylanthracene derivative, a water-soluble pillar[5]arene and a photosensitizer tetrakis(4-hydroxyphenyl)porphyrin (TPP), that may provide the controlled generation, storage and release of singlet oxygen. We design a new diphenylanthracene derivative with two trimethylammonium bromide groups on both ends that can be well recognized by the pillar[5]arene. The formed nanocarriers can be used to load TPP through their supramolecular self-assembly. The resulting nanoparticles show good water-solubility and uniform spherical morphology. After laser irradiation (660 nm), the nanoparticles exhibit excellent ability for the generation and storage of 1O2. When the irradiated nanoparticles are heated above 80 °C, 1O2 can be released from the system. Therefore, in this paper we pioneer the use of noncovalent interaction to integrate the diphenylanthracene derivatives and photosensitizers into one functional system, which provides a new strategy for the controlled generation, storage and release of singlet oxygen. We believe this groundbreaking strategy will have a great potential in providing necessary amounts of 1O2 for the photodynamic therapy of tumors in dark.

Keywords storage and controlled release of singlet oxygen      supramolecular nanoparticles      noncovalent interactions      pillararenes      diphenylanthracene      photosensitizers     
Corresponding Author(s): Bing Lu,Yong Yao   
Online First Date: 12 December 2022    Issue Date: 17 March 2023
 Cite this article:   
Bing Lu,Zhecheng Zhang,Meiyu Qi, et al. All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen[J]. Front. Chem. Sci. Eng., 2023, 17(3): 307-313.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2216-5
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I3/307
  Scheme1 Chemical structures of WP5, G and TPP, and graphical representation of the application of the novel nanoparticles.
  Scheme2 Synthesis route for compound G.
Fig.1  The 1H NMR (400 MHz, CD3OD:D2O = 1:4, 298 K) spectra for (a) G (3.6 mmol·L?1), (b) the mixture of G and WP5 (G:WP5 = 1:2, 10.8 mmol·L?1) and (c) WP5 (7.2 mmol·L?1).
Fig.2  (a) SEM image and (b) DLS data of the formed nanoparticles.
Fig.3  (a) The absorption spectra of the mixture of TPP (25 μmol·L?1) and G (100 μmol·L?1) in DMF under a 660 nm laser irradiation for different time; (b) the absorption spectra of the irradiated mixture of TPP (25 μmol·L?1) and G (100 μmol·L?1) in DMF, heated at different temperatures for 8 h.
Fig.4  (a) The absorption spectra of the nanoparticles in H2O after 660 nm laser irradiation for different times; (b) the absorption spectra of the nanoparticles in H2O after laser irradiation (660 nm) and of the irradiated nanoparticles after heating at different temperatures for 1 h; (c) the fluorescence spectra of the nanoparticles in H2O after the laser irradiation for 1 h and of the irradiated nanoparticles after heating at 110 °C for 4 h; (d) the fluorescence changes of the SOSG (10 μmol·L?1) in the presence of the irradiated nanoparticles in H2O after heating at 80 °C for different time.
1 D B Ushakov, K Gilmore, D Kopetzki, D T McQuade, P H Seeberger. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen. Angewandte Chemie International Edition, 2014, 53(2): 557–561
https://doi.org/10.1002/anie.201307778
2 S Nonell, C Flors. Singlet Oxygen: Applications in Biosciences and Nanosciences. Cambridge: Royal Society of Chemistry, 2016,
3 Z Zhou, J Song, L Nie, X Chen. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45(23): 6597–6626
https://doi.org/10.1039/C6CS00271D
4 Y Liu, P Bhattarai, Z Dai, X Chen. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108
https://doi.org/10.1039/C8CS00618K
5 D Lu, R Tao, Z Wang. Carbon-based materials for photodynamic therapy: a mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323
https://doi.org/10.1007/s11705-018-1750-7
6 H Wang, S Jiang, W Liu, X Zhang, Q Zhang, Y Luo, Y Xie. Ketones as molecular Co-catalysts for boosting exciton-based photocatalytic molecular oxygen activation. Angewandte Chemie International Edition, 2020, 59(27): 11093–11100
https://doi.org/10.1002/anie.202003042
7 B Lu, Z Zhang, D Jin, X Yuan, J Wang, Y Ding, Y Wang, Y Yao. A–DA′D–A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chemical Communications, 2021, 57(90): 12020–12023
https://doi.org/10.1039/D1CC04629B
8 H H Wasserman, J R Scheffer. Singlet oxygen reactions from photoperoxides. Journal of the American Chemical Society, 1967, 89(12): 3073–3075
https://doi.org/10.1021/ja00988a064
9 M A Filatov, M O Senge. Molecular devices based on reversible singlet oxygen binding in optical and photomedical applications. Molecular Systems Design & Engineering, 2016, 1(3): 258–272
https://doi.org/10.1039/C6ME00042H
10 S Kolemen, T Ozdemir, D Lee, G M Kim, T Karatas, J Yoon, E U Akkaya. Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy. Angewandte Chemie International Edition, 2016, 55(11): 3606–3610
https://doi.org/10.1002/anie.201510064
11 W Lv, H Xia, K Y Zhang, Z Chen, S Liu, W Huang, Q Zhao. Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells. Materials Horizons, 2017, 4(6): 1185–1189
https://doi.org/10.1039/C7MH00726D
12 W Fudickar, T Linker. Release of singlet oxygen from aromatic endoperoxides by chemical triggers. Angewandte Chemie International Edition, 2018, 57(39): 12971–12975
https://doi.org/10.1002/anie.201806881
13 Y You. Chemical tools for the generation and detection of singlet oxygen. Organic & Biomolecular Chemistry, 2018, 16(22): 4044–4060
https://doi.org/10.1039/C8OB00504D
14 K Liu, R A Lalancette, F Jäkle. Tuning the structure and electronic properties of B-N fused dipyridylanthracene and implications on the self-sensitized reactivity with singlet oxygen. Journal of the American Chemical Society, 2019, 141(18): 7453–7462
https://doi.org/10.1021/jacs.9b01958
15 V Brega, Y Yan, S W I Thomas. Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. Organic & Biomolecular Chemistry, 2020, 18(45): 189191–189209
https://doi.org/10.1039/D0OB01744B
16 Y Q He, W Fudickar, J H Tang, H Wang, X Li, J Han, Z Wang, M Liu, Y W Zhong, T Linker, P J Stang. Capture and release of singlet oxygen in coordination-driven self-assembled organoplatinum(II) metallacycles. Journal of the American Chemical Society, 2020, 142(5): 2601–2608
https://doi.org/10.1021/jacs.9b12693
17 C Yang, M Su, P Luo, Y Liu, F Yang, C Li. A photosensitive polymeric carrier with a renewable singlet oxygen reservoir regulated by two NIR beams for enhanced antitumor phototherapy. Small, 2021, 17(29): 2101180
https://doi.org/10.1002/smll.202101180
18 H Lai, J Yan, S Liu, Q Yang, F Xing, P Xiao. Peripheral RAFT polymerization on a covalent organic polymer with enhanced aqueous compatibility for controlled generation of singlet oxygen. Angewandte Chemie International Edition, 2020, 59(26): 10431–10435
https://doi.org/10.1002/anie.202002446
19 B R Xie, C X Li, Y Yu, J Y Zeng, M K Zhang, X S Wang, X Zeng, X Z Zhang. A singlet oxygen reservoir based on poly-pyridone and porphyrin nanoscale metal−organic framework for cancer therapy. CCS Chemistry, 2021, 3(5): 1187–1202
https://doi.org/10.31635/ccschem.020.202000201
20 C Mongin, A M Ardoy, R Méreau, D M Bassani, B Bibal. Singlet oxygen stimulus for switchable functional organic cages. Chemical Science, 2020, 11(6): 1478–1484
https://doi.org/10.1039/C9SC05354A
21 D Yan, E Lin, F Jin, S Qiao, Y Yang, Z Wang, F Xiong, Y Chen, P Cheng, Z Zhang. Engineering COFs as smart triggers for rapid capture and controlled release of singlet oxygen. Journal of Materials Chemistry A, 2021, 9(48): 27434–27441
https://doi.org/10.1039/D1TA07810K
22 J Zou, L Li, J Zhu, X Li, Z Yang, W Huang, X Chen. Singlet oxygen “afterglow” therapy with NIR-II fluorescent molecules. Advanced Materials, 2021, 33(44): 2103627
https://doi.org/10.1002/adma.202103627
23 S Martins, J P S Farinha, C Baleizão, M N Berberan-Santos. Controlled release of singlet oxygen using diphenylanthracene functionalized polymer nanoparticles. Chemical Communications, 2014, 50(25): 3317–3320
https://doi.org/10.1039/c3cc48293f
24 Z Yuan, S Yu, F Cao, Z Mao, C Gao, J Ling. Near-infrared light triggered photothermal and photodynamic therapy with an oxygen-shuttle endoperoxide of anthracene against tumor hypoxia. Polymer Chemistry, 2018, 9(16): 2124–2133
https://doi.org/10.1039/C8PY00289D
25 G Yu, K Jie, F Huang. Supramolecular amphiphiles based on host−guest molecular recognition motifs. Chemical Reviews, 2015, 115(15): 7240–7303
https://doi.org/10.1021/cr5005315
26 S Wang, W Gao, X Y Hu, Y Z Shen, L Wang. Supramolecular strategy for smart windows. Chemical Communications, 2019, 55(29): 4137–4149
https://doi.org/10.1039/C9CC00273A
27 Y Zhou, K Jie, R Zhao, F Huang. Supramolecular-macrocycle-based crystalline organic materials. Advanced Materials, 2019, 32(20): 1904824
https://doi.org/10.1002/adma.201904824
28 T Hashimoto, M Kumai, M Maeda, K Miyoshi, Y Tsuchido, S Fujiwara, T Hayashita. Structural effect of fluorophore on phenylboronic acid fluorophore/cyclodextrin complex for selective glucose recognition. Frontiers of Chemical Science and Engineering, 2019, 14(1): 53–60
https://doi.org/10.1007/s11705-019-1851-y
29 T Xiao, L Qi, W Zhong, C Lin, R Wang, L Wang. Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Materials Chemistry Frontiers, 2019, 3(10): 1973–1993
https://doi.org/10.1039/C9QM00428A
30 H Zhang, Z Liu, Y Zhao. Pillararene-based self-assembled amphiphiles. Chemical Society Reviews, 2018, 47(14): 5491–5528
https://doi.org/10.1039/C8CS00037A
31 T Ogoshi, T A Yamagishi, Y Nakamoto. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chemical Reviews, 2016, 116(14): 7937–8002
https://doi.org/10.1021/acs.chemrev.5b00765
32 X Wu, Y Yu, L Gao, X Y Hu, L Wang. Stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudo[2]rotaxanes via orthogonal metal−ligand coordination and hydrogen bonding interaction. Organic Chemistry Frontiers, 2016, 3(8): 966–970
https://doi.org/10.1039/C6QO00197A
33 Y F Li, Z Li, Q Lin, Y W Yang. Functional supramolecular gels based on pillar[n]arene macrocycles. Nanoscale, 2020, 12(4): 2180–2200
https://doi.org/10.1039/C9NR09532B
34 D Dai, Z Li, J Yang, C Wang, J R Wu, Y Wang, D Zhang, Y W Yang. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. Journal of the American Chemical Society, 2019, 141(11): 1414756–1414763
https://doi.org/10.1021/jacs.9b01546
35 J Wang, L Zhou, J Bei, Q Zhao, X Li, J He, Y Cai, T Chen, Y Du, Y Yao. An enhanced photo-electrochemical sensor constructed from pillar[5]arene functionalized au nps for ultrasensitive detection of caffeic acid. Talanta, 2022, 243: 243123322
https://doi.org/10.1016/j.talanta.2022.123322
36 H Zhu, H Wang, B Shi, L Shangguan, W Tong, G Yu, Z Mao, F Huang. Supramolecular peptide constructed by molecular lego allowing programmable self-assembly for photodynamic therapy. Nature Communications, 2019, 10(1): 2412
https://doi.org/10.1038/s41467-019-10385-9
37 M Cen, Y Ding, J Wang, X Yuan, B Lu, Y Wang, Y Yao. Cationic water-soluble pillar[5]arene-modified Cu2–xSe nanoparticles: supramolecular trap for atp and application in targeted photothermal therapy in the NIR-II window. ACS Macro Letters, 2020, 9(11): 1558–1562
https://doi.org/10.1021/acsmacrolett.0c00714
38 Y Wang, M Z Lv, N Song, Z J Liu, C Wang, Y W Yang. Dual-stimuli-responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest. Macromolecules, 2017, 50(15): 5759–5766
https://doi.org/10.1021/acs.macromol.7b01010
39 H Guo, X Yan, B Lu, J Wang, X Yuan, Y Han, Y Ding, Y Wang, C Yan, Y Yao. Pillar[5]arene-based supramolecular assemblies with two-step sequential fluorescence enhancement for mitochondria-targeted cell imaging. Journal of Materials Chemistry C, 2020, 8(44): 15622–15625
https://doi.org/10.1039/D0TC04343E
40 Y Li, J Wen, J Li, Z Wu, W Li, K Yang. Recent applications of pillar[n]arene-based host–guest recognition in chemosensing and imaging. ACS Sensors, 2021, 6(11): 3882–3897
https://doi.org/10.1021/acssensors.1c01510
41 W X Feng, Z Sun, M Barboiu. Pillar[n]arenes for construction of artificial transmembrane channels. Israel Journal of Chemistry, 2018, 58(11): 1209–1218
https://doi.org/10.1002/ijch.201800017
42 P Xin, H Kong, Y Sun, L Zhao, H Fang, H Zhu, T Jiang, J Guo, Q Zhang, W Dong, C P Chen. Artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules: tuning cation selectivity and generating membrane potential. Angewandte Chemie International Edition, 2019, 58(9): 2779–2784
https://doi.org/10.1002/anie.201813797
[1] FCE-22044-OF-LB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed