Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (4) : 449-459    https://doi.org/10.1007/s11705-022-2226-3
RESEARCH ARTICLE
Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight
Xiao Han1,2, Xiaoxuan Wang1,2, Jiafang Wang1,2, Yingjie Xie1,2, Cuiwei Du1,2, Chongfei Yu1,2, Jinglan Feng1,2, Jianhui Sun1,2(), Shuying Dong1,2()
1. School of Environment, Henan Normal University, Xinxiang 453007, China
2. Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Xinxiang 453007, China
 Download: PDF(4931 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal–organic frameworks are recognized as promising multifunctional materials, especially metal–organic framework-based photocatalysts, which are considered to be ideal photocatalytic materials. Herein, a new type of UiO-66/MoSe2 composite was prepared using the solvothermal method. The optimum composite was selected by adjusting the mass ratio of UiO-66 and MoSe2. X-ray diffraction analysis showed that the mass ratio influenced the crystal plane exposure rate of the composite, which may have affected its photocatalytic performance. The composite is composed of ultra-thin flower-like MoSe2 that wrapped around cubic UiO-66, a structure that increases the abundance of active sites for reactions and is more conducive to the separation of carriers. The photocatalytic properties of the composite were evaluated by measuring the degradation rate of Rhodamine B and the catalyst’s ability to reduce Cr(VI)-containing wastewater under visible light irradiation. Rhodamine B was decolorized completely in 120 min, and most of the Cr(VI) was reduced within 150 min. The photochemical mechanism of the complex was studied in detail. The existence of Mo6+ and oxygen vacancies, in addition to the Z-type heterojunction promote the separation of electrons and holes, which enhances the photocatalytic effect.

Keywords UiO-66/MoSe2      photocatalysis      dye-containing wastewater      heavy metal wastewater      oxygen vacancies     
Corresponding Author(s): Jianhui Sun,Shuying Dong   
Online First Date: 10 January 2023    Issue Date: 24 March 2023
 Cite this article:   
Xiao Han,Xiaoxuan Wang,Jiafang Wang, et al. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2226-3
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I4/449
  Scheme1 Schematic illustrating the synthesis of UiO-66/MoSe2.
Fig.1  XRD patterns of (a) UiO-66, (b) MoSe2, (c) composites, and (d) detail patterns of ZM-24 and ZM-25.
Fig.2  TEM micrographs of (a) UiO-66, (b) MoSe2, (c) ZM-23, and (d) the lattice fringes of ZM-23.
Fig.3  (a) UV–vis diffuse reflectance spectra and the relationship between (Ahν)1/2 and (b) the photon energy hν of UiO-66 and MoSe2.
Fig.4  Full spectrum of (a) the prepared catalyst, and high-resolution XPS spectra of (b) Zr 3d, (c) C 1s, (d) Se 3d, (e, f) Mo 3d.
SampleBET surface areaa)/(m2·g–1)Pore volumeb)/ (cm3·g–1)Pore diameterc)/ nm
UiO-66700.651.1826.7487
MoSe247.9390.30225.203
ZM-23378.670.39764.2
Tab.1  Comparison of the nitrogen adsorption characteristics of UiO-66, MoSe2, and ZM-23
Fig.5  (a) Nitrogen adsorption?desorption isotherms and (b) the corresponding pore size distribution curves of the as-synthesized UiO-66, MoSe2 and ZM-23 photocatalysts.
Fig.6  (a) Nyquist plots of the electrochemical impedance spectra and (b) photocurrent response of UiO-66, MoSe2 and ZM-23 photocatalysts.
Fig.7  (a) Degradation efficiencies of RhB by prepared photocatalysts under simulated sunlight irradiation and (b) ln(C0/C) versus time for RhB under simulated sunlight irradiation.
Fig.8  (a) Reduction performance for a Cr(VI) solution under simulated sunlight irradiation and (b) ln(C0/C) versus time for Cr(VI) under simulated sunlight irradiation.
Fig.9  (a) Cyclic degradation of RhB using ZM-23 and (b) the photocatalytic degradation of an RhB solution using ZM-23 with and without quenchers under simulated sunlight irradiation.
Fig.10  ESR spin-trapping (a) h+ and (b) ·O2 radicals.
  Scheme2 Photocatalytic mechanism of (a) UiO-66 and MoSe2 forming a traditional type II heterojunction and (b) Z-scheme heterojunction.
1 Y Wu, C Li, Z Tian, J Sun. Solar-driven integrated energy systems: state of the art and challenges. Journal of Power Sources, 2020, 478(2): 28762
https://doi.org/10.1016/j.jpowsour.2020.228762
2 E J Park, H J Jo, H J Kim, K Cho, J Jung. Effects of gamma-ray treatment on wastewater toxicity from a rubber products factory. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(3): 619–624
https://doi.org/10.1007/s10967-007-7094-2
3 K A Landry, T H Boyer. Diclofenac removal in urine using strong-base anion exchange polymer resins. Water Research, 2013, 47(17): 6432–6444
https://doi.org/10.1016/j.watres.2013.08.015
4 Q Xiang, J Yu, M Jaroniec. Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 2012, 41(2): 782–796
https://doi.org/10.1039/C1CS15172J
5 S Dong, Y Zhao, J Yang, X Liu, W Li, L Zhang, Y Wu, J Sun, J Feng, Y Zhu. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Applied Catalysis B: Environmental, 2021, 291: 120127
https://doi.org/10.1016/j.apcatb.2021.120127
6 S Dong, Y Zhao, J Yang, W Li, W Luo, S Li, X Liu, H Guo, C Yu, J Sun, J Feng, Y Zhu. Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification. Chemical Engineering Journal, 2022, 431: 133824
https://doi.org/10.1016/j.cej.2021.133824
7 S Jian, Z Tian, J Hu, K Zhang, L Zhang, G Duan, W Yang, S Jiang. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Advanced Powder Materials, 2022, 1(2): 100004
https://doi.org/10.1016/j.apmate.2021.09.004
8 S Dong, X Liu, G Tian, Y Wang, G Jin, Y Zhao, J Sun, M Fan. Surface oxygen vacancies modified Bi2MoO6 double-layer spheres: enhanced visible LED light photocatalytic activity for ciprofloxacin degradation. Journal of Alloys and Compounds, 2022, 892: 162217
https://doi.org/10.1016/j.jallcom.2021.162217
9 T Zhou, Y Sang, Y Sun, C Wu, X Wang, X Tang, T Zhang, H Wang, C Xie, D Zeng. Gas adsorption at metal sites for enhancing gas sensing performance of ZnO@ZIF-71 nanorod arrays. Langmuir, 2019, 35(9): 3248–3255
https://doi.org/10.1021/acs.langmuir.8b02642
10 K Suresh, A J Matzger. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF). Angewandte Chemie International Edition, 2019, 58(47): 16790–16794
https://doi.org/10.1002/anie.201907652
11 B Yan. Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(27): 8155–8175
https://doi.org/10.1039/C9TC01477B
12 J Guo, Y Qin, Y Zhu, X Zhang, C Long, M Zhao, Z Tang. Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50(9): 5366–5396
https://doi.org/10.1039/D0CS01538E
13 Z Li, J Guo, Y Wan, Y Qin, M Zhao. Combining metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs): emerging opportunities for new materials and applications. Nano Research, 2022, 15(4): 3514–3532
https://doi.org/10.1007/s12274-021-3980-0
14 Y Qin, Y Wan, J Guo, M Zhao. Two-dimensional metal–organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
https://doi.org/10.1016/j.cclet.2021.07.013
15 J Guo, Y Wan, Y Zhu, M Zhao, Z Tang. Advanced photocatalysts based on metal nanoparticle/metal–organic framework composites. Nano Research, 2021, 14(7): 2037–2052
https://doi.org/10.1007/s12274-020-3182-1
16 S Wang, B Y Guan, X W Lou. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy & Environmental Science, 2018, 11(2): 306–310
https://doi.org/10.1039/C7EE02934A
17 C C Wang, X D Du, J Li, X X Guo, P Wang, J Zhang. Photocatalytic Cr(VI) reduction in metal–organic frameworks: a mini-review. Applied Catalysis B: Environmental, 2016, 193: 198–216
https://doi.org/10.1016/j.apcatb.2016.04.030
18 L Shen, W Wu, R Liang, R Lin, L Wu. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal–organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 2013, 5(19): 9374–9382
https://doi.org/10.1039/c3nr03153e
19 B Liu, X Liu, J Liu, C Feng, Z Li, C Li, Y Gong, L Pan, S Xu, C Q Sun. Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for photoelectronchemical properties. Applied Catalysis B: Environmental, 2018, 226: 234–241
https://doi.org/10.1016/j.apcatb.2017.12.052
20 Z Sha, H S Chan, J Wu. Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299: 132–140
https://doi.org/10.1016/j.jhazmat.2015.06.016
21 J Cao, Z H Yang, W P Xiong, Y Y Zhou, Y R Peng, X Li, C Y Zhou, R Xu, Y R Zhang. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis. Chemical Engineering Journal, 2018, 353: 126–137
https://doi.org/10.1016/j.cej.2018.07.060
22 L Shen, M Luo, Y Liu, R Liang, F Jing, L Wu. Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Applied Catalysis B: Environmental, 2015, 166: 445–453
https://doi.org/10.1016/j.apcatb.2014.11.056
23 Y Wu, M Xu, X Chen, S Yang, H Wu, J Pan, X Xiong. CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale, 2016, 8(1): 440–450
https://doi.org/10.1039/C5NR05748E
24 C Dai, E Qing, Y Li, Z Zhou, C Yang, X Tian, Y Wang. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes. Nanoscale, 2015, 7(47): 19970–19976
https://doi.org/10.1039/C5NR06527E
25 Z Ren, X Liu, H Chu, H Yu, Y Xu, W Zheng, W Lei, P Chen, J Li, C Li. Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV–vis–NIR photon energy range. Journal of Colloid and Interface Science, 2017, 488: 190–195
https://doi.org/10.1016/j.jcis.2016.10.077
26 H Chu, X Liu, B Liu, G Zhu, W Lei, H Du, J Liu, J Li, C Li, C Sun. Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction. Scientific Reports, 2016, 6(1): 35304
https://doi.org/10.1038/srep35304
27 M H Wu, J T Lee, Y J Chung, M Srinivaas, J M Wu. Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy, 2017, 40: 369–375
https://doi.org/10.1016/j.nanoen.2017.08.042
28 Y Zhang, Q Gong, L Li, H Yang, Y Li, Q Wang. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 2015, 8(4): 1108–1115
https://doi.org/10.1007/s12274-014-0590-0
29 M Wang, Z Peng, J Qian, H Li, Z Zhao, X Fu. Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@MoSe2 nanoplates core–shell composite. Journal of Hazardous Materials, 2018, 347: 403–411
https://doi.org/10.1016/j.jhazmat.2018.01.013
30 J H Cavka, S Jakobsen, U Olsbye, N Guillou, C Lamberti, S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
https://doi.org/10.1021/ja8057953
31 Y Wang, J Zhao, Z Chen, F Zhang, W Guo, H Lin, F Qu. Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. Applied Catalysis B: Environmental, 2019, 244: 76–86
https://doi.org/10.1016/j.apcatb.2018.11.033
32 W Dong, D Wang, H Wang, M Li, F Chen, F Jia, Q Yang, X Li, X Yuan, J Gong, H Li, J Ye. Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. Journal of Colloid and Interface Science, 2019, 535: 444–457
https://doi.org/10.1016/j.jcis.2018.10.008
33 Y Yu, G H Nam, Q He, X J Wu, K Zhang, Z Yang, J Chen, Q Ma, M Zhao, Z Liu, F R Ran, X Wang, H Li, X Huang, B Li, Q Xiong, Q Zhang, Z Liu, L Gu, Y Du, W Huang, H Zhang. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10(6): 638–643
https://doi.org/10.1038/s41557-018-0035-6
34 J Yi, H Li, Y Gong, X She, Y Song, Y Xu, J Deng, S Yuan, H Xu, H Li. Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: the case of MoSe2. Applied Catalysis B: Environmental, 2019, 243: 330–336
https://doi.org/10.1016/j.apcatb.2018.10.054
35 Y Qu, H Medina, S W Wang, Y C Wang, C W Chen, T Y Su, A Manikandan, K Wang, Y C Shih, J W Chang, H C Kuo, C Y Lee, S Y Lu, G Shen, Z M Wang, Y L Chueh. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials, 2016, 28(44): 9831–9838
https://doi.org/10.1002/adma.201602697
36 D Gopalakrishnan, D Damien, M M Shaijumon. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano, 2014, 8(5): 5297–5303
https://doi.org/10.1021/nn501479e
37 M Liu, C Li, Q Zeng, X Du, L Gao, S Li, Y Zhai. Study on removal of elemental mercury over MoO3-CeO2/cylindrical activated coke in the presence of SO2 by Hg-temperature-programmed desorption. Chemical Engineering Journal, 2019, 371: 666–678
https://doi.org/10.1016/j.cej.2019.04.088
38 C Du, S Nie, C Zhang, T Wang, S Wang, J Zhang, C Yu, Z Lu, S Dong, J Feng, H Liu, J Sun. Dual-functional Z-scheme CdSe/Se/BiOBr photocatalyst: generation of hydrogen peroxide and efficient degradation of ciprofloxacin. Journal of Colloid and Interface Science, 2022, 606(2): 1715–1728
https://doi.org/10.1016/j.jcis.2021.08.152
39 X Nie, J Wang, W Duan, Z Zhao, L Li, Z Zhang. Effects of different crystallization methods on photocatalytic performance of TiO2 nanotubes. Applied Physics A: Materials Science & Processing, 2021, 127(11): 879
https://doi.org/10.1007/s00339-021-05041-3
40 N Zhang, S Liu, X Fu, Y J Xu. Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions. Journal of Materials Chemistry, 2012, 22(11): 5042–5052
https://doi.org/10.1039/c2jm15009c
[1] FCE-22054-OF-HX_suppl_1 Download
[1] Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
[2] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
[3] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[4] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[5] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[6] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[7] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[8] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[9] John TELLAM, Xu ZONG, Lianzhou WANG. Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor[J]. Front Chem Sci Eng, 2012, 6(1): 53-57.
[10] QIAN Qinghua, HU Yuyan, WEN Gaofei, FENG Xin, LU Xiao-hua. Preparation and gaseous photocatalytic activity of smooth potassium dititanate film[J]. Front. Chem. Sci. Eng., 2008, 2(3): 308-314.
[11] ZHANG Dongxiang, XUE Min, XU Hang, XU Wenguo, TARASOV V. Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process[J]. Front. Chem. Sci. Eng., 2008, 2(3): 319-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed