Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (7) : 930-941    https://doi.org/10.1007/s11705-023-2309-9
RESEARCH ARTICLE
Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation
Guodong Tian1,2, Chao Duan1,2(), Bingxu Zhou2, Chaochao Tian2, Qiang Wang1(), Jiachuan Chen1
1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
2. College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
 Download: PDF(5600 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Membrane technology for wastewater remediation has aroused wide interest owing to its unique properties and potential applications. However, it remains challenging to explore green, efficient and robust membrane material and technique for complex wastewater treatment. Herein, we proposed using a simple electrospinning and in situ seeding method to fabricate a lignin-based electrospun nanofiber membrane (LENM) decorated with photo-Fenton Ag@MIL-100(Fe) heterojunctions for efficient separation of oil/water emulsions and degradation of organic dye. Thanks to the embedded lignin in LENM, an ultrahigh MIL-100(Fe) loading (53 wt %) with good wettability and high porosity was obtained. As a result, the hybrid Ag@MIL-100(Fe)/LENM exhibited excellent oil/water emulsions separation efficiency (more than 97%) without a compromise of water flux. Moreover, the hybrid membrane showed an excellent dye removal with degradation of 99% methylene blue within 30 min under illumination, which is attributed to a synergy of dye adsorption/enrichment and photo-Fenton catalytic degradation from Ag@MIL-100(Fe). Therefore, the lignin-based photo-Fenton hybrid membrane can lay the foundation for the preparation and application of green, sustainable and versatile membrane materials and technologies for efficient complex wastewater remediation.

Keywords lignin      electrospinning      heterojunctions      photo-Fenton catalysis      wastewater remediation     
Corresponding Author(s): Chao Duan,Qiang Wang   
About author:

* These authors contributed equally to this work.

Just Accepted Date: 11 April 2023   Online First Date: 26 May 2023    Issue Date: 05 July 2023
 Cite this article:   
Guodong Tian,Chao Duan,Bingxu Zhou, et al. Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 930-941.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2309-9
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I7/930
Fig.1  (a) Schematic diagram of the synthesis of photo-Fenton lignin-based Ag@MIL-100(Fe)/LENM; (b?d) SEM images of LENM, MIL-100(Fe)/LENM and Ag@MIL100(Fe)/LENM at the optimized 50 wt % of lignin content; (e) EDS mapping images of Ag@MIL100(Fe)/LENM with C, Fe, O, Ag element.
Fig.2  BET results based on the (a) N2 adsorption/desorption isotherms, (b) pore size distribution (PSD), (c) specific surface area (SSA), (d) mean pore diameter (MPD) of LENM, MIL-100(Fe), MIL-100(Fe)/LENM and Ag@MIL-100(Fe)/LENM.
Fig.3  (a) XRD patterns and (b) Fourier transform infrared spectra of MIL-100(Fe) particles, MIL-100(Fe)/LENM, Ag@MIL-100(Fe)/LENM and LENM; XPS spectra of Ag@MIL-100(Fe)/LENM (c) C 1s, (d) O 1s, (e) Fe 2p and (f) Ag 3d.
Fig.4  (a) WCA results of different samples; (b) photographs and optical microscope pictures of oil/water emulsion pre- and post- separation; (c) permeation fluxes and (d) separation efficiency of SFEs and SSEs filtrated by the Ag@MIL-100(Fe)/LENM.
Fig.5  (a) UV?vis DRS and (b) PL spectrum of LENM, MIL-100(Fe), MIL-100(Fe)/LENM and Ag@MIL-100(Fe)/LENM; (c) comparison of adsorption capacity of three different lignin-based membranes; (d) UV?vis adsorption spectra of MB during the treatment of Ag@MIL-100(Fe)/LENM; (e) adsorption capacity and photo-Fenton catalytic activity of the three different membranes under dark and visible light conditions; (f) kinetic curves for the three membrane samples.
Fig.6  The possible adsorption-photo-Fenton mechanism of Ag@MIL-100(Fe)/LENM for catalytic degradation of MB dyes.
1 L Yu, M Han, F He. A review of treating oily wastewater. Arabian Journal of Chemistry, 2017, 10: S1913–S1922
https://doi.org/10.1016/j.arabjc.2013.07.020
2 F Uddin. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose, 2021, 28(17): 10715–10739
https://doi.org/10.1007/s10570-021-04228-4
3 N Methneni, J A Morales Gonzalez, A Jaziri, H Ben Mansour, M Fernandez Serrano. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: ecotoxicology appraisal via a battery of biotests. Environmental Research, 2021, 196: 110956
https://doi.org/10.1016/j.envres.2021.110956
4 M Saeed, M Muneer, N Akram. Photocatalysis: an effective tool for photodegradation of dyes—A review. Environmental Science and Pollution Research International, 2022, 29(1): 293–311
https://doi.org/10.1007/s11356-021-16389-7
5 R Selvasembian, W Gwenzi, N Chaukura, S Mthembu. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. Journal of Hazardous Materials, 2021, 417: 125960
https://doi.org/10.1016/j.jhazmat.2021.125960
6 M Shen, W Hu, C Duan, J Li, S Ding, L Zhang, J Zhu, Y Ni. Cellulose nanofibers carbon aerogel based single-cobalt-atom catalyst for high-efficiency oxygen reduction and zinc−air battery. Journal of Colloid and Interface Science, 2023, 629: 778–785
https://doi.org/10.1016/j.jcis.2022.09.035
7 H Yan, C Lai, D Wang, S Liu, X Li, X Zhou, H Yi, B Li, M Zhang, L Li, X Liu, L Qin, Y Fu. In situ chemical oxidation: peroxide or persulfate coupled with membrane technology for wastewater treatment. Journal of Materials Chemistry A, 2021, 9(20): 11944–11960
https://doi.org/10.1039/D1TA01063H
8 Y Jiang, S Li, J Su, X Lv, S Liu, B Su. Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment. Journal of Membrane Science, 2021, 635: 119523
https://doi.org/10.1016/j.memsci.2021.119523
9 J Yang, Z Li, Z Wang, S Yuan, Y Li, W Zhao, X Zhang. 2D material based thin-film nanocomposite membranes for water treatment. Advanced Materials Technologies, 2021, 6(10): 2000862
https://doi.org/10.1002/admt.202000862
10 X Long, G Zhao, J Hu, Y Zheng, J Zhang, Y Zuo, F Jiao. Cracked-earth-like titanium carbide MXene membranes with abundant hydroxyl groups for oil-in-water emulsion separation. Journal of Colloid and Interface Science, 2022, 607: 378–388
https://doi.org/10.1016/j.jcis.2021.08.175
11 Y Liao, C H Loh, M Tian, R Wang, A G Fane. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Progress in Polymer Science, 2018, 77: 69–94
https://doi.org/10.1016/j.progpolymsci.2017.10.003
12 F Zhu, Y Zheng, B Zhang, Y Dai. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 2021, 401: 12368
https://doi.org/10.1016/j.jhazmat.2020.123608
13 R Zhao, Y Tian, S Li, T Ma, H Lei, G Zhu. An electrospun fiber based metal–organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. Journal of Materials Chemistry A, 2019, 7(39): 22559–22570
https://doi.org/10.1039/C9TA04664J
14 S K Kang, K Hwang, J W Park, M Ha Kim, P S Lee, S H Jeong. Nanostructural engineering of electrospun poly(vinyl alcohol)/carbon nanotube mats into dense films for alcohol dehydration. ACS Sustainable Chemistry & Engineering, 2022, 10(40): 13380–13389
https://doi.org/10.1021/acssuschemeng.2c03574
15 E J Lee, A K An, P Hadi, S Lee, Y C Woo, H K Shon. Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation. Journal of Membrane Science, 2017, 524: 712–720
https://doi.org/10.1016/j.memsci.2016.11.069
16 M Borrego, J E Martin Alfonso, M C Sanchez, C Valencia, J M Franco. Electrospun lignin-PVP nanofibers and their ability for structuring oil. International Journal of Biological Macromolecules, 2021, 180: 212–221
https://doi.org/10.1016/j.ijbiomac.2021.03.069
17 C Duan, C Tian, X Feng, G Tian, X Liu, Y Ni. Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp. Bioresource Technology, 2022, 370: 128543
https://doi.org/10.1016/j.biortech.2022.128543
18 C Duan, C Tian, G Tian, X Wang, M Shen, S Yang, Y Ni. Simultaneous microwave-assisted phosphotungstic acid catalysis for rapid improvements on the accessibility and reactivity of Kraft-based dissolving pulp. International Journal of Biological Macromolecules, 2022, 227: 214–221
https://doi.org/10.1016/j.ijbiomac.2022.12.182
19 M H Tran, D P Phan, E Y Lee. Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chemistry, 2021, 23(13): 4633–4646
https://doi.org/10.1039/D1GC01139A
20 N Kamimura, S Sakamoto, N Mitsuda, E Masai, S Kajita. Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 2019, 56: 179–186
https://doi.org/10.1016/j.copbio.2018.11.011
21 M Yu, Y Guo, X Wang, H Zhu, W Li, J Zhou. Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications. International Journal of Biological Macromolecules, 2022, 208: 782–793
https://doi.org/10.1016/j.ijbiomac.2022.03.184
22 C Hou, W Chen, L Fu, S Zhang, C Liang, Y Wang. Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation. International Journal of Biological Macromolecules, 2021, 174: 319–329
https://doi.org/10.1016/j.ijbiomac.2021.01.184
23 Q Li, M Dong, R Li, Y Cui, G Xie, X Wang, Y Long. Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydrate Polymers, 2021, 253: 117200
https://doi.org/10.1016/j.carbpol.2020.117200
24 X Zhang, J Wang, X Dong, Y Lv. Functionalized metal–organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 2020, 242: 125144
https://doi.org/10.1016/j.chemosphere.2019.125144
25 S Gautam, H Agrawal, M Thakur, A Akbari, H Sharda, R Kaur, M Amini. Metal oxides and metal organic frameworks for the photocatalytic degradation: a review. Journal of Environmental Chemical Engineering, 2020, 8(3): 103726
https://doi.org/10.1016/j.jece.2020.103726
26 C Wang, J Li, X Lv, Y Zhang, G Guo. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
https://doi.org/10.1039/C4EE01299B
27 Y Liu, Z Liu, D Huang, M Cheng, G Zeng, C Lai, C Zhang, C Zhou, W Wang, D Jiang, H Wang, B Shao. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 2019, 388: 63–78
https://doi.org/10.1016/j.ccr.2019.02.031
28 J Xiao, Q Shang, Y Xiong, Q Zhang, Y Luo, S Yu, H L Jiang. Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: the platinum location matters. Angewandte Chemie International Edition, 2016, 55(32): 9389–9393
https://doi.org/10.1002/anie.201603990
29 X Liu, R Dang, W Dong, X Huang, J Tang, H Gao, G Wang. A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe): a platform for efficient visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2017, 209: 506–513
https://doi.org/10.1016/j.apcatb.2017.02.073
30 W He, Z Li, S Lv, M Niu, W Zhou, J Li, R Lu, H Gao, C Pan, S Zhang. Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe). Chemical Engineering Journal, 2021, 409: 128274
https://doi.org/10.1016/j.cej.2020.128274
31 W Lu, C Duan, Y Zhang, K Gao, L Dai, M Shen, W Wang, J Wang, Y Ni. Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(VI) reduction. Carbohydrate Polymers, 2021, 258: 117676
https://doi.org/10.1016/j.carbpol.2021.117676
32 W Lu, C Duan, C Liu, Y Zhang, X Meng, L Dai, W Wang, H Yu, Y Ni. A self-cleaning and photocatalytic cellulose-fiber-supported “Ag@AgCl@MOF-cloth”membrane for complex wastewater remediation. Carbohydrate Polymers, 2020, 247: 116691
https://doi.org/10.1016/j.carbpol.2020.116691
33 X Meng, C Duan, Y Zhang, W Lu, W Wang, Y Ni. Corncob-supported Ag NPs@ ZIF-8 nanohybrids as multifunction biosorbents for wastewater remediation: robust adsorption, catalysis and antibacterial activity. Composites Science and Technology, 2020, 200: 108384
https://doi.org/10.1016/j.compscitech.2020.108384
34 A Xie, J Cui, J Yang, Y Chen, J Dai, J Lang, C Li, Y Yan. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation. Journal of Materials Chemistry A, 2019, 7(14): 8491–8502
https://doi.org/10.1039/C9TA00521H
35 Q Zhang, Z Zhang, D Zhao, L Wang, H Li, F Zhang, Y Huo, H Li. Synergistic photocatalytic-photothermal contribution enhanced by recovered Ag+ ions on MXene membrane for organic pollutant removal. Applied Catalysis B: Environmental, 2023, 320: 122009
https://doi.org/10.1016/j.apcatb.2022.122009
36 M A T Ahmad, N Abdul Rahman. Preparation and characterization of highly porous polyacrylonitrile electrospun nanofibers using lignin as soft template via selective chemical dissolution technique. Polymers, 2021, 13(22): 3938
https://doi.org/10.3390/polym13223938
37 L Zhang, Y He, L Ma, J Chen, Y Fan, S Zhang, H Shi, Z Li, P Luo. Hierarchically stabilized PAN/β-FeOOH nanofibrous membrane for efficient water purification with excellent antifouling performance and robust solvent resistance. ACS Applied Materials & Interfaces, 2019, 11(37): 34487–34496
https://doi.org/10.1021/acsami.9b12855
38 A A M Attia, K M Abas, A A A Nada, M A H Shouman, A O Siskova, J Mosnacek. Fabrication, modification, and characterization of lignin-based electrospun fibers derived from distinctive biomass sources. Polymers, 2021, 13(14): 2277
https://doi.org/10.3390/polym13142277
39 X Du, X Yi, P Wang, J Deng, C Wang. Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions. Chinese Journal of Catalysis, 2019, 40(1): 70–79
https://doi.org/10.1016/S1872-2067(18)63160-2
40 C Duan, J Meng, X Wang, X Meng, X Sun, Y Xu, W Zhao, Y Ni. Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@metal–organic frameworks@carboxymethylated fibers. Carbohydrate Polymers, 2018, 193: 82–88
https://doi.org/10.1016/j.carbpol.2018.03.089
41 D Jia, J Xie, M Dirican, D Fang, C Yan, Y Liu, C Li, M Cui, H Liu, G Chen, X Zhang, J Tao. Highly smooth, robust, degradable and cost-effective modified lignin-nanocellulose green composite substrates for flexible and green electronics. Composites Part B: Engineering, 2022, 236: 109803
https://doi.org/10.1016/j.compositesb.2022.109803
42 K Gao, M Shen, C Duan, C Xiong, L Dai, W Zhao, W Lu, S Ding, Y Ni. Co-N-doped directional multichannel PAN/CA-based electrospun carbon nanofibers as high-efficiency bifunctional oxygen electrocatalysts for Zn-air batteries. ACS Sustainable Chemistry & Engineering, 2021, 9(50): 17068–17077
https://doi.org/10.1021/acssuschemeng.1c06040
43 R Wang, H Xu, X Liu, D Fang, S Wei, A N Yu. In-situ growth of iron oxides with MIL-100(Fe) enhances its adsorption for selenite. Surfaces and Interfaces, 2022, 34: 102325
https://doi.org/10.1016/j.surfin.2022.102325
44 X Zhang, Y Qi, J Yang, S Dong, J Liu, J Li, K Shi. Insight into stabilization behaviors of lignin/PAN-derived electrospun precursor fibers. Polymer Degradation & Stability, 2021, 191: 109680
https://doi.org/10.1016/j.polymdegradstab.2021.109680
45 M Lei, N Wang, L Zhu, H Tang. Peculiar and rapid photocatalytic degradation of tetrabromodiphenyl ethers over Ag/TiO2 induced by interaction between silver nanoparticles and bromine atoms in the target. Chemosphere, 2016, 150: 536–544
https://doi.org/10.1016/j.chemosphere.2015.10.048
46 L A Wali, A M Alwan, A B Dheyab, D A Hashim. Excellent fabrication of Pd–Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik, 2019, 179: 708–717
https://doi.org/10.1016/j.ijleo.2018.11.011
47 R Wang, Y Zhong, R He, Y Zou, J Yang, M Fu, R Zhang, Y Zhou. Ultrahigh emulsion separation flux and antifouling performance of MIL-100(Fe)@Graphene oxide membrane enabled by its superhydrophilicity and self-cleaning ability. Advanced Sustainable Systems, 2022, 6(6): 2100497
https://doi.org/10.1002/adsu.202100497
48 Q Li, W Deng, C Li, Q Sun, F Huang, Y Zhao, S Li. High-flux oil/water separation with interfacial capillary effect in switchable superwetting Cu(OH)2@ZIF-8 nanowire membranes. ACS Applied Materials & Interfaces, 2018, 10(46): 40265–40273
https://doi.org/10.1021/acsami.8b13983
49 S Su, Z Xing, S Zhang, M Du, Y Wang, Z Li, P Chen, Q Zhu, W Zhou. Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance. Applied Surface Science, 2021, 537(2021): 147890
50 S Duan, J Li, X Liu, Y Wang, S Zeng, D Shao, T Hayat. HF-free synthesis of nanoscale metal–organic framework NMIL-100(Fe) as an efficient dye adsorbent. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3368–3378
https://doi.org/10.1021/acssuschemeng.6b00434
51 H Molavi, A Hakimian, A Shojaei, M Raeiszadeh. Selective dye adsorption by highly water stable metal–organic framework: long term stability analysis in aqueous media. Applied Surface Science, 2018, 445: 424–436
https://doi.org/10.1016/j.apsusc.2018.03.189
52 L Yang, Y Xiang, F Jia, L Xia, C Gao, X Wu, L Peng, J Liu, S Song. Photo-thermal synergy for boosting photo-Fenton activity with rGO-ZnFe2O4: novel photo-activation process and mechanism toward environment remediation. Applied Catalysis B: Environmental, 2021, 292: 120198
https://doi.org/10.1016/j.apcatb.2021.120198
[1] FCE-22134-OF-TG_suppl_1 Download
[1] Yongsheng Zhang, Xiaomeng Yang, Jinpan Bao, Hang Qian, Dong Sui, Jianshe Wang, Chunbao Charles Xu, Yanfang Huang. Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes for high-performance supercapacitors[J]. Front. Chem. Sci. Eng., 2023, 17(5): 504-515.
[2] Xizi Xu, He Lv, Mingxin Zhang, Menglong Wang, Yangjian Zhou, Yanan Liu, Deng-Guang Yu. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment[J]. Front. Chem. Sci. Eng., 2023, 17(3): 249-275.
[3] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[4] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[5] Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering[J]. Front. Chem. Sci. Eng., 2019, 13(1): 108-119.
[6] Min Song, Wei Zhang, Yongsheng Chen, Jinming Luo, John C. Crittenden. The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams[J]. Front. Chem. Sci. Eng., 2017, 11(3): 328-337.
[7] Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels[J]. Front Chem Sci Eng, 2011, 5(3): 392-400.
[8] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed