Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 2014-2024    https://doi.org/10.1007/s11705-023-2346-4
RESEARCH ARTICLE
Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification
Xiao Yong1, Pengfei Sha1, Jinghui Peng1, Mengdi Liu1, Qian Zhang1, Jianhua Yu1(), Liyan Yu1(), Lifeng Dong1,2()
1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2. Department of Physics, Hamline University, Saint Paul, MN 55104, USA
 Download: PDF(4588 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Capacitive deionization can alleviate water shortage and water environmental pollution, but performances are greatly determined by the electrochemical and desalination properties of its electrode materials. In this work, B and N co-doped porous carbon with micro-mesoporous structures is derived from sodium alginate by a carbonization, activation, and hydrothermal doping process, which exhibits large specific surface area (2587 m2·g‒1) and high specific capacitance (190.7 F·g‒1) for adsorption of salt ions and heavy metal ions. Furthermore, the materials provide a desalination capacity of 26.9 mg·g−1 at 1.2 V in 500 mg·L‒1 NaCl solution as well as a high removal capacity (239.6 mg·g‒1) and adsorption rate (7.99 mg·g‒1·min‒1) for Pb2+ with an excellent cycle stability. This work can pave the way to design low-cost porous carbon with high-performances for removal of salt ions and heavy metal ions.

Keywords capacitance deionization      porous carbon      B/N co-doping      heavy metal ions      water purification     
Corresponding Author(s): Jianhua Yu,Liyan Yu,Lifeng Dong   
Just Accepted Date: 11 July 2023   Online First Date: 04 September 2023    Issue Date: 30 November 2023
 Cite this article:   
Xiao Yong,Pengfei Sha,Jinghui Peng, et al. Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2014-2024.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2346-4
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/2014
Fig.1  Scheme of the preparation process of SABN.
Fig.2  SEM images of (a) SA, (b) SAB, and (c) SABN; (d) the SEM image of SABN and corresponding C, N, and B elemental mapping.
Fig.3  (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption–desorption isotherms, and (d) water contact angles of three samples.
Fig.4  (a) CV curves at 10 mV·s?1, (b) specific capacitances at different scanning rates, (c) the diagrams of current density versus scanning rate during charging, and (d) Nyquist plots for SA, SAB, and SABN.
Fig.5  (a) Electrosorption performances in NaCl solution with an initial concentration of 500 mg?L?1 at 1.2 V, (b) variations of desalination capacity, (c) desalination capacities and desalination rates, and (d) CDI Ragone plots of electrodes.
SampleWorking voltage/VInitial concentrationSAC /(mg·g?1)Reference
KOH-C1.450 mg·L?118.56[44]
ZnO-ACC1.80.5 mmol·L?115.67[45]
Ag/P-AC1.2500 mg·L?19.3[46]
ZAC@VS21.2500 mg·L?1239.52[47]
NPC-0.751.2100 mg·L?121.5[19]
ZnO@N-PCNM1.850 mg·L?132.87[48]
SABN1.2500 mg·L?1239.6This work
Tab.1  Comparison between SABN and other carbon electrodes for Pb2+
Fig.6  (a) Variations of desalination capacity in PbCl2 solution with an initial concentration of 500 mg?L?1, (b) CDI cycling performances, (c) first-order adsorption kinetic analysis, and (d) second-order adsorption kinetic analysis of SABN.
Fig.7  XPS spectra of (a) Pb 4f and (b) N 1s before and after the adsorption of Pb2+.
1 Y Zhang, Y Wang, J Xue, C Tang. MnO2-coated graphene/polypyrrole hybrids for enhanced capacitive deionization performance of Cu2+ removal. Industrial & Engineering Chemistry Research, 2022, 61(10): 3582–3590
https://doi.org/10.1021/acs.iecr.1c04159
2 Y Dong, W Xing, K Luo, J Zhang, J Yu, W Jin, J Wang, W Tang. Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI). Journal of Cleaner Production, 2021, 326: 129417
https://doi.org/10.1016/j.jclepro.2021.129417
3 R Wang, B Xu, Y Chen, X Yin, Y Liu, W Yang. Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Separation and Purification Technology, 2022, 282: 120122
https://doi.org/10.1016/j.seppur.2021.120122
4 M He, M Zong, P Zhang, S Huo, X Zhang, X Song, K Li. Hierarchical N-doped porous 3D network electrode with enhanced capacitive deionization performance. Separation and Purification Technology, 2022, 297: 121558
https://doi.org/10.1016/j.seppur.2022.121558
5 Z Ye, F Wang, C Jia, K Mu, M Yu, Y Lv, Z Shao. Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chemical Engineering Journal, 2017, 330: 1166–1173
https://doi.org/10.1016/j.cej.2017.08.070
6 M Kim, X Xu, R Xin, J Earnshaw, A Ashok, J Kim, T Park, A K Nanjundan, W A El-Said, J W Yi, J Na, Y Yamauchi. KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Applied Materials & Interfaces, 2021, 13(44): 52034–52043
https://doi.org/10.1021/acsami.1c09107
7 M Kim, K L Firestein, J F S Fernando, X Xu, H Lim, D V Golberg, J Na, J Kim, H Nara, J Tang, Y Yamauchi. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chemical Science, 2022, 13(36): 10836–10845
https://doi.org/10.1039/D2SC02726G
8 M Kim, C Wang, J Earnshaw, T Park, N Amirilian, A Ashok, J Na, M Han, A E Rowan, J Li, J W Yi, Y Yamauchi. Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(45): 24056–24063
https://doi.org/10.1039/D2TA06950D
9 L Xu, Z Ding, Y Chen, X Xu, Y Liu, J Li, T Lu, L Pan. Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization. Journal of Colloid and Interface Science, 2023, 630: 372–381
https://doi.org/10.1016/j.jcis.2022.10.140
10 Y Liu, Y Zhang, Y Zhang, Q Zhang, X Gao, X Dou, H Zhu, X Yuan, L Pan. MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(3): 1443–1450
https://doi.org/10.1039/C9TA11537D
11 K Wang, Y Liu, X Xu, Y Jiao, L Pan. In situ synthesis of ultrasmall NaTi2(PO4)3 nanocube decorated carbon nanofiber network enables ultrafast and superstable rocking-chair capacitive deionization. Chemical Engineering Journal, 2023, 463: 142394
https://doi.org/10.1016/j.cej.2023.142394
12 Z Chen, Z Ding, Y Chen, X Xu, Y Liu, T Lu, L Pan. Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate on MXene nano-stacking for high-performance capacitive deionization. Chemical Engineering Journal, 2023, 452: 139451
https://doi.org/10.1016/j.cej.2022.139451
13 Z Li, S Mao, Y Yang, Z Sun, R Zhao. Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. Journal of Colloid and Interface Science, 2021, 585: 85–94
https://doi.org/10.1016/j.jcis.2020.11.091
14 J Elisadiki, T E Kibona, R L Machunda, M W Saleem, W S Kim, Y A C Jande. Biomass-based carbon electrode materials for capacitive deionization: a review. Biomass Conversion and Biorefinery, 2020, 10(4): 1327–1356
https://doi.org/10.1007/s13399-019-00463-9
15 Z Shang, X An, H Zhang, M Shen, F Baker, Y Liu, L Liu, J Yang, H Cao, Q Xu, H Liu, Y Ni. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161: 62–70
https://doi.org/10.1016/j.carbon.2020.01.020
16 Y Liu, B Geng, Y Zhang, X Gao, X Du, X Dou, H Zhu, X Yuan. MnO2 decorated porous carbon derived from Enteromorpha prolifera as flow-through electrode for dual-mode capacitive deionization. Desalination, 2021, 504: 114977
https://doi.org/10.1016/j.desal.2021.114977
17 L Liu, Y Lu, D Qiu, D Wang, Y Ding, G Wang, Z Liang, Z Shen, A Li, X Chen, H Song. Sodium alginate-derived porous carbon: self-template carbonization mechanism and application in capacitive energy storage. Journal of Colloid and Interface Science, 2022, 620: 284–292
https://doi.org/10.1016/j.jcis.2022.04.022
18 W Yang, W Yang, L Kong, A Song, X Qin, G Shao. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon, 2018, 127: 557–567
https://doi.org/10.1016/j.carbon.2017.11.050
19 S Wang, D Chen, Z X Zhang, Y Hu, H Quan. Mesopore dominated capacitive deionization of N-doped hierarchically porous carbon for water purification. Separation and Purification Technology, 2022, 290: 120912
https://doi.org/10.1016/j.seppur.2022.120912
20 Z Ding, X Xu, J Li, Y Li, K Wang, T Lu, M S A Hossain, M A Amin, S Zhang, L Pan, Y Yamauchi. Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430: 133161
https://doi.org/10.1016/j.cej.2021.133161
21 L Luo, Y Zhou, W Yan, X Wu, S Wang, W Zhao. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochimica Acta, 2020, 360: 137010
https://doi.org/10.1016/j.electacta.2020.137010
22 S Qiu, Z Chen, H Zhuo, Y Hu, Q Liu, X Peng, L Zhong. Using FeCl3 as a solvent, template, and activator to prepare B, N co-doping porous carbon with excellent supercapacitance. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15983–15994
https://doi.org/10.1021/acssuschemeng.9b02431
23 F Yang, S Cao, Y Tang, K Yin, Y Gao, H Pang. HCl-activated porous nitrogen-doped carbon nanopolyhedras with abundant hierarchical pores for ultrafast desalination. Journal of Colloid and Interface Science, 2022, 628: 236–246
https://doi.org/10.1016/j.jcis.2022.07.153
24 Z Xie, X Shang, J Yang, B Hu, P Nie, W Jiang, J Liu. 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization. Carbon, 2020, 158: 184–192
https://doi.org/10.1016/j.carbon.2019.12.004
25 S M Zheng, Z H Yuan, D D Dionysiou, L B Zhong, F Zhao, J C E Yang, Y M Zheng. Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination. Chemical Engineering Journal, 2023, 458: 141471
https://doi.org/10.1016/j.cej.2023.141471
26 W Zhang, C Jin, Z Shi, L Zhu, L Chen, Y Liu, H Zhang. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization. Chemosphere, 2022, 291: 133113
https://doi.org/10.1016/j.chemosphere.2021.133113
27 Y Lian, L Liu, H Bao, Z Cao, J Sun, J Zhao, H Zhang. Noncorrosive and nonpolluting synthesis of biomass-derived nanosheets with B, N Codoping. ACS Applied Energy Materials, 2022, 5(7): 8885–8891
https://doi.org/10.1021/acsaem.2c01373
28 M Chu, W Tian, J Zhao, M Zou, Z Lu, D Zhang, J Jiang. A comprehensive review of capacitive deionization technology with biochar-based electrodes: biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 2022, 307: 136024
https://doi.org/10.1016/j.chemosphere.2022.136024
29 Y Zhou, J Ren, L Xia, Q Zheng, J Liao, E Long, F Xie, C Xu, D Lin. Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochimica Acta, 2018, 284: 336–345
https://doi.org/10.1016/j.electacta.2018.07.134
30 X Song, D Fang, S Huo, K Li. 3D-ordered honeycomb-like nitrogen-doped micro-mesoporous carbon for brackish water desalination using capacitive deionization. Environmental Science. Nano, 2021, 8(8): 2191–2203
https://doi.org/10.1039/D1EN00276G
31 D Guo, B Ding, X Hu, Y Wang, F Han, X Wu. Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11441–11449
https://doi.org/10.1021/acssuschemeng.8b01435
32 H Zhang, C Wang, W Zhang, M Zhang, J Qi, J Qian, X Sun, B Yuliarto, J Na, T Park, H G A Gomaa, Y V Kaneti, J W Yi, Y Yamauchi, J Li. Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(21): 12807–12817
https://doi.org/10.1039/D0TA10797B
33 R He, M Neupane, A Zia, X Huang, C Bowers, M Wang, J Lu, Y Yang, P Dong. Binder-free wood converted carbon for enhanced water desalination performance. Advanced Functional Materials, 2022, 32(49): 2208040
https://doi.org/10.1002/adfm.202208040
34 N Wu, X Gu, S Zhou, X Han, H Leng, P Zhang, P Yang, Y Qi, S Li, J Qiu. Hierarchical porous N, S co-doped carbon derived from fish scales for enhanced membrane capacitive deionization. Electrochimica Acta, 2022, 409: 139983
https://doi.org/10.1016/j.electacta.2022.139983
35 A S Yasin, I M A Mohamed, H M Mousa, C H Park, C S Kim. Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific Reports, 2018, 8(1): 541
https://doi.org/10.1038/s41598-017-19027-w
36 H Zhang, J Tian, X Cui, J Li, Z Zhu. Highly mesoporous carbon nanofiber electrodes with ultrahigh specific surface area for efficient capacitive deionization. Carbon, 2023, 201: 920–929
https://doi.org/10.1016/j.carbon.2022.10.002
37 P Zhang, P A Fritz, K Schroen, H Duan, R M Boom, M B Chan-Park. Zwitterionic polymer modified porous carbon for high-performance and antifouling capacitive desalination. ACS Applied Materials & Interfaces, 2018, 10(39): 33564–33573
https://doi.org/10.1021/acsami.8b11708
38 M Shi, X Hong, C Liu, H Qiang, F Wang, M Xia. Green double organic salt activation strategy for one-step synthesis of N-doped 3D hierarchical porous carbon for capacitive deionization. Chemical Engineering Journal, 2023, 453: 139764
https://doi.org/10.1016/j.cej.2022.139764
39 M E Suss, S Porada, X Sun, P M Biesheuvel, J Yoon, V Presser. Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy & Environmental Science, 2015, 8(8): 2296–2319
https://doi.org/10.1039/C5EE00519A
40 T Lu, Y Liu, X Xu, L Pan, A A Alothman, J Shapter, Y Wang, Y Yamauchi. Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021, 256: 117771
https://doi.org/10.1016/j.seppur.2020.117771
41 X Liu, H Liu, M Mi, W Kong, Y Ge, J Hu. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Separation and Purification Technology, 2019, 224: 44–50
https://doi.org/10.1016/j.seppur.2019.05.010
42 Y Li, Y Liu, M Wang, X Xu, T Lu, C Q Sun, L Pan. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon, 2018, 130: 377–383
https://doi.org/10.1016/j.carbon.2018.01.035
43 W Xing, M Zhang, J Liang, W Tang, P Li, Y Luo, N Tang, J Guo. Facile synthesis of pinecone biomass-derived phosphorus-doping porous carbon electrodes for efficient electrochemical salt removal. Separation and Purification Technology, 2020, 251: 117357
https://doi.org/10.1016/j.seppur.2020.117357
44 Z Cao, S Hu, J Yu, L Wang, Q Yang, H Song, S Zhang. Enhanced capacitive deionization of toxic metal ions using nanoporous walnut shell-derived carbon. Journal of Environmental Chemical Engineering, 2022, 10(5): 108245
https://doi.org/10.1016/j.jece.2022.108245
45 H H Kyaw, M T Z Myint, S AlHarthi, M AlAbri. Removal of heavy metal ions by capacitive deionization: effect of surface modification on ions adsorption. Journal of Hazardous Materials, 2020, 385: 121565
https://doi.org/10.1016/j.jhazmat.2019.121565
46 G Bharath, A Hai, K Rambabu, F Ahmed, A S Haidyrah, N Ahmad, S W Hasan, F Banat. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Environmental Research, 2021, 197: 111110
https://doi.org/10.1016/j.envres.2021.111110
47 D Liu, S Xu, Y Cai, Y Wang, J Guo, Y Li. A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead(II) ions. Journal of Electroanalytical Chemistry, 2022, 910: 116152
https://doi.org/10.1016/j.jelechem.2022.116152
48 Y Li, R Xu, L Qiao, Y Li, D Wang, D Li, X Liang, G Xu, M Gao, H Gong, X Zhang, H Qiu, K Liang, P Chen, Y Li. Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous and Mesoporous Materials, 2022, 338: 111889
https://doi.org/10.1016/j.micromeso.2022.111889
49 B Xu, R Wang, Y Fan, B Li, J Zhang, F Peng, Y Du, W Yang. Flexible self-supporting electrode for high removal performance of arsenic by capacitive deionization. Separation and Purification Technology, 2022, 299: 121732
https://doi.org/10.1016/j.seppur.2022.121732
[1] FCE-23025-OF-YX_suppl_1 Download
[1] Tao Huang, Xihong Zu, Jianhui Ma, Wenbin Jian, Xueqing Qiu, Wenli Zhang. High-yield production of porous carbon spheres derived from enzymatic hydrolysis lignin for zinc ion hybrid capacitors[J]. Front. Chem. Sci. Eng., 2024, 18(2): 22-.
[2] Wei Liu, Zhikun Li, Ranran Sang, Jinsong Li, Xueping Song, Qingxi Hou. Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1065-1074.
[3] Jiali Bai, Jiamei Huang, Qiyun Yu, Muslum Demir, Eda Akgul, Bilge Nazli Altay, Xin Hu, Linlin Wang. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1122-1130.
[4] Qiaoyan Zhou, Huan Liu, Yipeng Wang, Kangxin Xiao, Guangyan Yang, Hong Yao. Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components[J]. Front. Chem. Sci. Eng., 2023, 17(7): 942-953.
[5] Qing-Hui Kong, Xian-Wei Lv, Jin-Tao Ren, Hao-Yu Wang, Xin-Lian Song, Feng Xu, Zhong-Yong Yuan. “Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1755-1764.
[6] Gaohui Du, Yi Fan, Lina Jia, Yunting Wang, Yawen Hao, Wenqi Zhao, Qingmei Su, Bingshe Xu. Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional electrocatalyst for overall water splitting[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1707-1717.
[7] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[8] Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2021, 15(2): 279-287.
[9] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[10] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[11] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[12] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[13] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
[14] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[15] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed