Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (3) : 28    https://doi.org/10.1007/s11705-024-2391-7
A strategy to synthesize phosphorus-containing nickel phyllosilicate whiskers to enhance the flame retardancy of epoxy composites with excellent mechanical and dry-friction properties
Shibin Nie1,2,4(), Zongquan Zhao2, Yuxuan Xu2(), Wei He2, Wenli Zhai2, Jinian Yang3
1. School of Public Security and Emergency Management, Anhui University of Science and Technology, Hefei 231131, China
2. School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
3. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
4. Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230000, China
 Download: PDF(5778 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To enhance the fire safety and wear resistance of epoxy, phosphorus-containing nickel phyllosilicate whiskers (FP-NiPS) were synthesized using a facile hydrothermal technology, with 9,10-dihydro-9-oxa-10-phosphaphenanthrene as the organic modifier. The impacts of FP-NiPS on the thermal stability, flame retardancy, and mechanical and tribological properties of EP composites were explored. The findings demonstrated that 5 wt % FP-NiPS elevated the limiting oxygen index of the EP composite from 23.8% to 28.4%, achieving a V-0 rating during vertical burning tests. FP-NiPS could enhance the thermal stability of epoxy resin (EP) and facilitate the development of a dense and continuous carbon layer, thereby significantly improving the fire safety of the EP composites. The FP-NiPS led to an 8.2% increase in the tensile strength and a 38.8% increase in the elastic modulus of the EP composite, showing outstanding mechanical properties. Furthermore, FP-NiPS showed remarkable potential in enhancing the wear resistance of EP. The wear rate of 1 wt % FP-NiPS is 2.34 × 10−5 mm3·N–1·m–1, a decrease of 66.7% compared to EP. This work provides a novel promising modification method to enhance the fire safety, mechanical and wear resistance properties of EP.

Keywords nickel phyllosilicate      epoxy resin      flame retardant      wear resistance      mechanical property     
Corresponding Author(s): Shibin Nie,Yuxuan Xu   
Just Accepted Date: 12 December 2023   Issue Date: 06 February 2024
 Cite this article:   
Shibin Nie,Zongquan Zhao,Yuxuan Xu, et al. A strategy to synthesize phosphorus-containing nickel phyllosilicate whiskers to enhance the flame retardancy of epoxy composites with excellent mechanical and dry-friction properties[J]. Front. Chem. Sci. Eng., 2024, 18(3): 28.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2391-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I3/28
  Scheme1 Schematic illustration depicting the process for preparing EP/FP-NiPS composites.
Fig.1  (a) XRD pattern of FP-NiPS, (b) FTIR spectra of FP-NiPS, GPTMS-g-DOPO and DOPO, (c, d) SEM morphology, (e, f) TEM morphology, (g) dark field image and corresponding elemental mapping, and (h) EDS energy spectra of FP-NiPS.
SamplesT5%/°CTp1/°C(dW/dT)p1/(%·°C–1)Tp2/°C(dW/dT)p2/(%·°C–1)Char/wt %
EP309.7379.1–2.40559.6–0.530.10
EP/FP-NiPS1304.2373.1–1.76556.8–0.810.13
EP/FP-NiPS3308.7366.6–2.55545.9–0.800.90
EP/FP-NiPS5303.1364.3–2.57541.8–0.672.40
Tab.1  Thermal stability of EP and its composites under ambient air conditions
Fig.2  (a) TGA and (b) DTG thermograms for EP and its composites under ambient air conditions.
Fig.3  (a) TGA and (b) DTG thermograms for EP and its composites under N2 conditions.
SamplesT5%/°C(dW/dT)5%/(%·°C–1)Tp/°C(dW/dT)p/(%·°C–1)Char/wt %
EP362.3–0.86375.5–2.2814.9
EP/FP-NiPS1348.4–0.28375.6–1.8821.1
EP/FP-NiPS3360.2–0.57378.3–1.9326.7
EP/FP-NiPS5350.9–0.33376.2–1.5732.5
Tab.2  Thermal stability of EP and its composites under N2 conditions
SamplesUL-94LOI/%
t1/st2/st1 + t2/sCombustion grade
EP224224N.R.23.8
EP/FP-NiPS310212V-127.2
EP/FP-NiPS5415V-028.4
Tab.3  The results of UL-94 and LOI for EP and its composites
Fig.4  (a–c) Digital images of the samples taken during the initial ignition process; SEM images of the residual coke: (d) EP, (e) EP/FP-NiPS3, and (f) EP/FP-NiPS5.
Fig.5  (a) FTIR spectra of vapor phase products of EP and EP/FP-NiPS5 at peak decomposition; (b–e) absorbance pyrolysis products of EP and EP/FP-NiPS5 vs. time.
Fig.6  SEM images of the fractured surfaces: (a) EP, (b) EP/FP-NiPS1, (c) EP/FP-NiPS3 and (d) EP/ FP-NiPS5.
Fig.7  (a, b) Tensile test parameters, (c) friction coefficient curves and (d) wear rate for EP and its composites.
1 C H Peng , T Chen , B R Zeng , G R Chen , C H Yuan , Y T Xu , L Z Dai . Anderson-type polyoxometalate-based hybrid with high flame retardant efficiency for the preparation of multifunctional epoxy resin nanocomposites. Composites. Part B, Engineering, 2020, 186: 107780
https://doi.org/10.1016/j.compositesb.2020.107780
2 Z Liu , Y Qiu , L J Qian , Y J Chen , B Xu . Strengthen flame retardancy of epoxy thermoset by montmorillonite particles adhering phosphorus-containing fragments. Journal of Applied Polymer Science, 2020, 137(1): 47500
https://doi.org/10.1002/app.47500
3 C M Becker , A D Gabbardo , F Wypych , S C Amico . Mechanical and flame-retardant properties of epoxy/Mg-Al LDH composites. Composites. Part A, Applied Science and Manufacturing, 2011, 42(2): 196–202
https://doi.org/10.1016/j.compositesa.2010.11.005
4 E N Kalali , X Wang , D Y Wang . Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6819–6826
https://doi.org/10.1039/C5TA00010F
5 W Cai , W W Guo , Y Pan , J L Wang , X W Mu , X M Feng , B H Yuan , B B Wang , Y Hu . Polydopamine-bridged synthesis of ternary h-BN@PDA@SnO2 as nanoenhancers for flame retardant and smoke suppression of epoxy composites. Composites. Part A, Applied Science and Manufacturing, 2018, 111: 94–105
https://doi.org/10.1016/j.compositesa.2018.05.015
6 X Wang , W Y Xing , X M Feng , L Song , Y Hu . MoS2/polymer nanocomposites: preparation, properties, and applications. Polymer Reviews, 2017, 57(3): 440–466
https://doi.org/10.1080/15583724.2017.1309662
7 M Y Zhi , Q Y Liu , Y L Zhao , S S Gao , Z Zhang , Y H He . Novel MoS2-DOPO hybrid for effective enhancements on flame retardancy and smoke suppression of flexible polyurethane foams. ACS Omega, 2020, 5(6): 2734–2746
https://doi.org/10.1021/acsomega.9b03346
8 K Q Zhou , R Gao , X D Qian . Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. Journal of Hazardous Materials, 2017, 338: 343–355
https://doi.org/10.1016/j.jhazmat.2017.05.046
9 L Wang , S H Wu , X Y Dong , R Wang , L Q Zhang , J L Wang , J Zhong , L X Wu , X Wang . A pre-constructed graphene-ammonium polyphosphate aerogel (GAPPA) for efficiently enhancing the mechanical and fire-safety performances of polymers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(10): 4449–4457
https://doi.org/10.1039/C8TA00736E
10 Z Wang , W Wu , M H Wagner , L Zhang , S Bard . Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polymer Degradation & Stability, 2016, 128: 209–216
https://doi.org/10.1016/j.polymdegradstab.2016.03.016
11 H N Wang , F F Su , Z H Wang , Y Y Xin , D D Yao , Y P Zheng . Using phenylphosphinic acid/zinc hydroxystannate nanoparticle-decorated graphene to enhance the flame retardancy and smoke suppressive performance of epoxy resin. New Journal of Chemistry, 2023, 47(4): 1760–1766
https://doi.org/10.1039/D2NJ04694F
12 X H Shi , S J Wu , W M Xie , X L Li , Q Y Liu , D L V Jimena , D Y Wang . Fabrication of layered double hydroxide@ferric decorated polyphosphazene hybrid architecture towards simultaneously improved fire safety, smoke suppression and mechanical strength of epoxy resin. Composites. Part A, Applied Science and Manufacturing, 2023, 172: 107602
https://doi.org/10.1016/j.compositesa.2023.107602
13 C Qiu , J Jiang , L Ai . When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8(1): 945–951
https://doi.org/10.1021/acsami.5b10634
14 L Jiang , J N Yang , J Dong , S B Nie , Y X Xu , X S Feng . Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear resistance of epoxy composites. Frontiers of Chemical Science and Engineering, 2023, 17(9): 1254–1266
https://doi.org/10.1007/s11705-023-2297-3
15 Z Bian , S Kawi . Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339: 3–23
https://doi.org/10.1016/j.cattod.2018.12.030
16 J N Yang , Z Y Li , Y X Xu , S B Nie , Y Liu . Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27(9): 274
https://doi.org/10.1007/s10965-020-02250-x
17 J N Yang , X S Feng , S B Nie , Y X Xu , Z Y Li . Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16(4): 484–497
https://doi.org/10.1007/s11705-021-2074-6
18 J N Yang , X S Feng , S B Nie , J Dong , L Jiang , Y X Xu . Simultaneously enhanced friction and wear resistances of epoxy nanocomposites modified by nickel phyllosilicate nanoflowers under wet sliding conditions. Polymer Composites, 2023, 44(6): 3054–3067
https://doi.org/10.1002/pc.27300
19 Y X Xu , G L Dai , S B Nie , J N Yang , S Liu , H Zhang , X Dong . Nickel-based metal-organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1493–1504
https://doi.org/10.1007/s11705-022-2168-9
20 J Dong , J Yang , P Jin , S Nie . Facile synthesizing the homogeneous hierarchical nanosheets of nickel phyllosilicate to enhance the wear resistance, mechanical response and thermal stability of epoxy composites. Journal of Materials Research and Technology, 2023, 26: 6857–6876
https://doi.org/10.1016/j.jmrt.2023.09.044
21 L Wang , X M Hu , Z L Mao , J L Wang , X Wang . Phosphorylated metal-organic framework for reducing fire hazards of poly(methyl methacrylate). Polymers, 2022, 14(22): 48–71
https://doi.org/10.3390/polym14224871
22 L Zhang , S Q Chen , Y T Pan , S D Zhang , S B Nie , P Wei , X Q Zhang , R Wang , D Y Wang . Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9272–9280
https://doi.org/10.1021/acssuschemeng.9b00174
23 P Burattin , M Che , C Louis . Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074
https://doi.org/10.1021/jp970194d
24 M A Jr Melo , C Pires , C Airoldi . The influence of the leaving iodine atom on phyllosilicate syntheses and useful application in toxic metal removal with favorable energetic effects. RSC Advances, 2014, 4(77): 41028–41038
https://doi.org/10.1039/C4RA06615D
25 M G Fonseca , C Airoldi . Calorimetric study of amino modified talc matrices and copper salts. An evidence of the chelate effect. Journal of Thermal Analysis and Calorimetry, 2001, 64(1): 273–280
https://doi.org/10.1023/A:1011561702252
26 S L Burkett , A Press , S Mann . Synthesis, characterization, and reactivity of layered inorganic organic nanocomposites based on 2:1 trioctahedral phyllosilicates. Chemistry of Materials, 1997, 9(5): 1071–1073
https://doi.org/10.1021/cm9700615
27 S Z Ni , C J Wang , H Y Bian , Z H Yu , L Jiao , G G Fang , H Q Dai . Enhancing physical performance and hydrophobicity of paper-based cellulosic material via impregnation with starch and PEI-KH560. Cellulose, 2018, 25(2): 1365–1375
https://doi.org/10.1007/s10570-017-1630-1
28 C K Kundu , L Song , Y Hu . Sol-gel coatings from DOPO-alkoxysilanes: efficacy in fire protection of polyamide 66 textiles. European Polymer Journal, 2020, 125: 109483
https://doi.org/10.1016/j.eurpolymj.2020.109483
29 Q P Wang , L Xiong , H B Liang , L Chen , S M Huang . Synthesis of a novel polysiloxane containing phosphorus, and boron and its effect on flame retardancy, mechanical, and thermal properties of epoxy resin. Polymer Composites, 2018, 39(3): 807–814
https://doi.org/10.1002/pc.24002
30 J N Yang , Y Liu , Y X Xu , S B Nie , Z Y Li . Property investigations of epoxy composites filled by nickel phyllosilicate-decorated graphene oxide. Journal of Materials Science, 2020, 55(24): 10593–10610
https://doi.org/10.1007/s10853-020-04765-6
31 P Burattin , M Che , C Louis . Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074
https://doi.org/10.1021/jp970194d
32 F Adam , T Chew . A facile template-free room temperature synthesis of mesoporous wormlike nickel phyllosilicate. Open Colloid Science Journal, 2012, 5(1): 1–4
https://doi.org/10.2174/1876530001205010001
33 M G Fonseca , C R Silva , J S Barone , C Airoldi . Layered hybrid nickel phyllosilicates and reactivity of the gallery space. Journal of Materials Chemistry, 2000, 10(3): 789–795
https://doi.org/10.1039/a907804e
34 M Rajaei , D Y Wang , D Bhattacharyya . Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Composites. Part B, Engineering, 2017, 113: 381–390
https://doi.org/10.1016/j.compositesb.2017.01.039
35 H Q Luo , W H Rao , P Zhao , L Wang , Y L Liu , C B Yu . An efficient organic/inorganic phosphorus-nitrogen-silicon flame retardant towards low-flammability epoxy resin. Polymer Degradation & Stability, 2020, 178: 109–195
https://doi.org/10.1016/j.polymdegradstab.2020.109195
36 B H Yuan , Y Hu , X F Chen , Y Q Shi , Y Niu , Y Zhang , S He , H M Dai . Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 106–117
https://doi.org/10.1016/j.compositesa.2017.04.012
37 Y B Hou , W Z Hu , Z Gui , Y Hu . Bi2Se3 nanosheets: advanced nanofillers for reinforcing and flame retarding polyethylene nanocomposites. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 371–380
https://doi.org/10.1016/j.compositesa.2017.05.034
38 H Kim , A A Abdala , C W Macosko . Graphene/polymer nanocomposites. Macromolecules, 2010, 43(16): 6515–6530
https://doi.org/10.1021/ma100572e
39 K Wang , J Wu , L Ye , H Zeng . Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Composites. Part A, Applied Science and Manufacturing, 2003, 34(12): 1199–1205
https://doi.org/10.1016/j.compositesa.2003.07.004
40 S Gupta , T Hammann , R Johnson , M F Riyad . Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58(3): 560–566
https://doi.org/10.1080/10402004.2014.996308
41 N Myshkin , A Kovalev . Adhesion and surface forces in polymer tribology: a review. Friction, 2018, 6(2): 143–155
https://doi.org/10.1007/s40544-018-0203-0
[1] Liu Jiang, Jinian Yang, Jie Dong, Shibin Nie, Yuxuan Xu, Xuesong Feng. Facile synthesis of polyaniline nanorods to simultaneously enhance the mechanical properties and wear resistance of epoxy composites[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1254-1266.
[2] Wen-Jie Jin, Yu Xin, Xian-Wei Cheng, Jin-Ping Guan, Guo-Qiang Chen. Construction of sustainable, colored and multifunctional protein silk fabric using biomass riboflavin sodium phosphate[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1131-1139.
[3] Weixin Liu, Bo Yin, Jie Zhang, Xingping Liu, Wenxian Lian, Shaokun Tang. A novel strategy for the construction of silk fibroin–SiO2 composite aerogel with enhanced mechanical property and thermal insulation performance[J]. Front. Chem. Sci. Eng., 2023, 17(3): 288-297.
[4] Shibin Nie, Wei He, Yuxuan Xu, Wenli Zhai, Hong Zhang, Jinian Yang. Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2114-2126.
[5] Jinian Yang, Xuesong Feng, Shibin Nie, Yuxuan Xu, Zhenyu Li. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(4): 484-497.
[6] Yuxuan Xu, Guanglong Dai, Shibin Nie, Jinian Yang, Song Liu, Hong Zhang, Xiang Dong. Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1493-1504.
[7] Gang Tang, Ruiqing Zhao, Dan Deng, Yadong Yang, Depeng Chen, Bing Zhang, Xinliang Liu, Xiuyu Liu. Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1269-1280.
[8] Yong Luo, Yuhui Xie, Renjie Chen, Ruizhi Zheng, Hua Wu, Xinxin Sheng, Delong Xie, Yi Mei. A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1332-1345.
[9] Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1281-1295.
[10] Haojie Ding, Liuyun Jiang, Chunyan Tang, Shuo Tang, Bingli Ma, Na Zhang, Yue Wen, Yan Zhang, Liping Sheng, Shengpei Su, Xiang Hu. Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly (lactide-co-glycolide)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 630-642.
[11] Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol[J]. Front. Chem. Sci. Eng., 2018, 12(3): 457-466.
[12] ZHANG Daohong, JIA Demin, HUANG Xianbo. Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin[J]. Front. Chem. Sci. Eng., 2007, 1(4): 349-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed