Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (4) : 39    https://doi.org/10.1007/s11705-024-2400-x
Dendrimer-induced synthesis of porous organosilica capsules for enzyme encapsulation
Ziyi Chu1, Boyu Zhang1, Zhenhua Wu1, Jiaxu Zhang1, Yiran Cheng1, Xueying Wang1, Jiafu Shi1,2,3(), Zhongyi Jiang2,4
1. School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
3. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
4. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(4712 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Organic matter-induced mineralization is a green and versatile method for synthesizing hybrid nanostructured materials, where the material properties are mainly influenced by the species of natural biomolecules, linear synthetic polymer, or small molecules, limiting their diversity. Herein, we adopted dendrimer poly(amidoamine) (PAMAM) as the inducer to synthesize organosilica-PAMAM network (OSPN) capsules for mannose isomerase (MIase) encapsulation based on a hard-templating method. The structure of OSPN capsules can be precisely regulated by adjusting the molecular weight and concentration of PAMAM, thereby demonstrating a substantial impact on the kinetic behavior of the MIase@OSPN system. The MIase@OSPN system was used for catalytic production of mannose from D-fructose. A mannose yield of 22.24% was obtained, which is higher than that of MIase in organosilica network capsules and similar to that of the free enzyme. The overall catalytic efficiency (kcat/Km) of the MIase@OSPN system for the substrate D-fructose was up to 0.556 s−1·mmol−1·L. Meanwhile, the MIase@OSPN system showed excellent stability and recyclability, maintaining more than 50% of the yield even after 12 cycles.

Keywords enzyme immobilization      enzyme catalysis      organosilica networks      capsules      sugar biosynthesis     
Corresponding Author(s): Jiafu Shi   
Just Accepted Date: 28 December 2023   Issue Date: 15 March 2024
 Cite this article:   
Ziyi Chu,Boyu Zhang,Zhenhua Wu, et al. Dendrimer-induced synthesis of porous organosilica capsules for enzyme encapsulation[J]. Front. Chem. Sci. Eng., 2024, 18(4): 39.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2400-x
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I4/39
Fig.1  Schematic diagram about the synthesis and catalysis processes of MIase@OSPN.
Fig.2  (a, b) TEM images, (c) FT-IR spectra, (d–f) XPS spectra, (g) pore size distribution, and (h) TGA image of OSPN and OSN capsules.
Fig.3  (a–c) TEM images, (d) FT-IR spectra, and (e–g) pore size distribution of OSPN capsules with different molecular weights of PAMAM.
Fig.4  (a–c) TEM images, (d) FT-IR spectra, and (e–g) pore size distribution of OSPN capsules with different concentrations of PAMAM.
Fig.5  (a, d) Yield of MIase@OSN and MIase@OSPN systems; (b, e) kcat/Km; (c, f) leakage ratio of MIase@OSPN with different molecular weights and different concentrations of PAMAM; (g) stability of MIase, MIase@OSN and MIase@OSPN under different pH incubation conditions; (h) different temperature incubation conditions; (i) recyclability of MIase@OSN and MIase@OSPN. The horizontal black lines in (a) and (d) represent the yield of MIase@OSN.
Molecular weight of PAMAM/DaKm/(mmol·L?1)Vmax/(mmol·L?1·min?1)kcat/s?1(kcat/Km)/(s?1·mmol?1·L)
57153.590.07618.500.345
325647.520.09823.810.501
1421589.220.0905.510.247
Tab.1  Kinetic parameters of OSPN with different molecular weights of PAMAM
Concentrations of PAMAM/(g·L?1)Km/(mmol·L?1)Vmax/(mmol·L?1·min?1)kcat/s?1(kcat/Km)/(s?1·mmol?1·L)
0.0565.300.07117.430.267
0.1056.070.09523.050.411
0.2046.520.09823.810.501
0.4033.360.06015.450.556
0.8017.060.0307.210.423
Tab.2  Kinetic parameters of OSPN with different concentrations of PAMAM
1 Q Y Pan , Z P Lei , Y J Zhao , W Zhang . Microenvironment effect of covalent organic frameworks on chemical catalysis. EnergyChem, 2023, 5(6): 100107
https://doi.org/10.1016/j.enchem.2023.100107
2 K Y Wang , J Q Zhang , Y C Hsu , H Y Lin , Z S Han , J D Pang , Z T Yang , R R Liang , W Shi , H C Zhou . Bioinspired framework catalysts: from enzyme immobilization to biomimetic catalysis. Chemical Reviews, 2023, 123(9): 5347–5420
https://doi.org/10.1021/acs.chemrev.2c00879
3 W P Li , J F Shi , Y Chen , X Y Liu , X X Meng , Z Y Guo , S H Li , B Y Zhang , Z Y Jiang . Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization. Chemical Engineering Journal, 2023, 468: 143609
https://doi.org/10.1016/j.cej.2023.143609
4 J M Bolivar , J M Woodley , R Fernandez-Lafuente . Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chemical Society Reviews, 2022, 51(15): 6251–6290
https://doi.org/10.1039/D2CS00083K
5 K S Siddiqi , A Husen , R A K Rao . A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 2018, 16(1): 14
https://doi.org/10.1186/s12951-018-0334-5
6 X Chang , C Y Zhang , L Gao , X Liu , S P You , W Qi , K Wang , X Guo , R X Su , H Lu . et al.. Tandem biocatalysis by CotA-TJ102@UIO-66-NH2 and novozym 435 for highly selective transformation of HMF into FDCA. Transactions of Tianjin University, 2019, 25(5): 488–496
https://doi.org/10.1007/s12209-019-00215-w
7 Q Y Meng , S L Zhong , J Wang , Y Gao , X J Cui . Advances in chitosan-based microcapsules and their applications. Carbohydrate Polymers, 2023, 300: 120265
https://doi.org/10.1016/j.carbpol.2022.120265
8 Z L Xu , G W Xiao , H F Li , Y Shen , J Zhang , T Pan , X Y Chen , B Zheng , J S Wu , S Li . et al.. Compartmentalization within self-assembled metal-organic framework nanoparticles for tandem reactions. Advanced Functional Materials, 2018, 28(34): 1802479
https://doi.org/10.1002/adfm.201802479
9 W Li , W Bing , S Huang , J S Ren , X G Qu . Mussel byssus-like reversible metal-chelated supramolecular complex used for dynamic cellular surface engineering and imaging. Advanced Functional Materials, 2015, 25(24): 3775–3784
https://doi.org/10.1002/adfm.201500039
10 Q Lei , J M Guo , F H Kong , J F Cao , L Wang , W Zhu , C J Brinker . Bioinspired cell silicification: from extracellular to intracellular. Journal of the American Chemical Society, 2021, 143(17): 6305–6322
https://doi.org/10.1021/jacs.1c00814
11 Q Q Zhu , Y L Zheng , Z J Zhang , Y Chen . Enzyme immobilization on covalent organic framework supports. Nature Protocols, 2023, 18(10): 3080–3125
https://doi.org/10.1038/s41596-023-00868-x
12 Q Huo , J J Zhao , W R Li , D Yang , S P Zhang , J F Shi , Z Y Jiang . Crackled nanocapsules: the “imperfect” structure for enzyme immobilization. Chemical Communications, 2019, 55(50): 7155–7158
https://doi.org/10.1039/C9CC02797A
13 J F Shi , Y Tian , H Liu , D Yang , S H Zhang , Y Z Wu , Z Y Jiang . Shielding of enzyme by a stable and protective organosilica layer on monolithic scaffolds for continuous bioconversion. Industrial & Engineering Chemistry Research, 2017, 56(38): 10615–10622
https://doi.org/10.1021/acs.iecr.7b03033
14 J P Gonçalves , D Promlok , T Ivanov , S J Tao , T Rheinberger , S M Jo , Y J Yu , R Graf , M Wagner , D Crespy . et al.. Confining the sol-gel reaction at the water/oil interface: creating compartmentalized enzymatic nano-organelles for artificial cells. Angewandte Chemie International Edition, 2023, 62(11): e202216966
https://doi.org/10.1002/anie.202216966
15 C Ortiz , E Jackson , L Betancor . Immobilization and stabilization of enzymes using biomimetic silicification reactions. Journal of Sol-Gel Science and Technology, 2022, 102(1): 86–95
https://doi.org/10.1007/s10971-022-05751-x
16 J F Shi , L Zhang , Z Y Jiang . Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization. ACS Applied Materials & Interfaces, 2011, 3(3): 881–889
https://doi.org/10.1021/am101241u
17 S H Yang , E H Ko , Y H Jung , I S Choi . Bioinspired functionalization of silica-encapsulated yeast cells. Angewandte Chemie International Edition, 2011, 50(27): 6115–6118
https://doi.org/10.1002/ange.201102030
18 M A A Abdelhamid , S P Pack . Biomimetic and bioinspired silicifications: recent advances for biomaterial design and applications. Acta Biomaterialia, 2021, 120: 38–56
https://doi.org/10.1016/j.actbio.2020.05.017
19 P P Han , X Y Wang , Y J Li , H Wu , T Shi , J F Shi . Synthesis of a healthy sweetener d-tagatose from starch catalyzed by semiartificial cell factories. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3813–3820
https://doi.org/10.1021/acs.jafc.2c08400
20 M Wang , V A Kickhoefer , E H Lan , B S Dunn , L H Rome , S Mahendra . Vault nanocapsule-mediated biomimetic silicification for efficient and robust immobilization of proteins in silica composites. Chemical Engineering Journal, 2021, 418: 129406
https://doi.org/10.1016/j.cej.2021.129406
21 R R Naik , S Singamaneni . Introduction: bioinspired and biomimetic materials. Chemical Reviews, 2017, 117(20): 12581–12583
https://doi.org/10.1021/acs.chemrev.7b00552
22 Y P Zhang , C Y Qi , J Tu . Fabrication of hollow mesoporous silica-based nanoreactors for enzyme immobilization: high loading capacity, effective protection, and recyclability. Materials Today. Chemistry, 2023, 27: 101298
https://doi.org/10.1016/j.mtchem.2022.101298
23 S Jiang , L Caire Da Silva , T Ivanov , M Mottola , K Landfester . Synthetic silica nano-organelles for regulation of cascade reactions in multi-compartmentalized systems. Angewandte Chemie International Edition, 2022, 61(6): e202113784
https://doi.org/10.1002/anie.202113784
24 K Yamamoto , T Imaoka , M Tanabe , T Kambe . New horizon of nanoparticle and cluster catalysis with dendrimers. Chemical Reviews, 2020, 120(2): 1397–1437
https://doi.org/10.1021/acs.chemrev.9b00188
25 G F Chen , G P Zhang , B X Jin , M Y Luo , Y J Luo , S Aya , X Y Li . Supramolecular hexagonal platelet assemblies with uniform and precisely-controlled dimensions. Journal of the American Chemical Society, 2019, 141(39): 15498–15503
https://doi.org/10.1021/jacs.9b08316
26 A Madadlou , D Iacopino , D Sheehan , Z Emam-Djomeh , M E Mousavi . Enhanced thermal and ultrasonic stability of a fungal protease encapsulated within biomimetically generated silicate nanospheres. Biochimica et Biophysica Acta General Subjects, 2010, 1800(4): 459–465
https://doi.org/10.1016/j.bbagen.2010.01.004
27 W Qin , K X Xu , J W Wang , X F Cui , J L Zhang , Y Q Weng . Phosphorous-functionalized PAMAM dendrimers supported on mesoporous silica for Zr(IV) and Hf(IV) separation. RSC Advances, 2021, 11(55): 34754–34765
https://doi.org/10.1039/D1RA05781B
28 D D Guo , S H Huang , Y Zhu . The adsorption of heavy metal ions by poly(amidoamine) dendrimer-functionalized nanomaterials: a review. Nanomaterials, 2022, 12(11): 1831
https://doi.org/10.3390/nano12111831
29 S Banta , I Wheeldon . Theory-based development of performance metrics for comparing multireactant enzymes. ACS Catalysis, 2020, 10(2): 1123–1132
https://doi.org/10.1021/acscatal.9b03491
[1] FCE-23079-OF-CZ_suppl_1 Download
[1] Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li. Development of barium@alginate adsorbents for sulfate removal in lithium refining[J]. Front. Chem. Sci. Eng., 2021, 15(1): 198-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed