|
|
Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis |
Yi Chen1, Shaowei Chen1, Yan Shao2, Cui Quan3, Ningbo Gao3, Xiaolei Fan4,5,6( ), Huanhao Chen1( ) |
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China 2. School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China 3. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China 4. Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M139PL, UK 5. Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China 6. Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China |
|
|
Abstract Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.
|
Keywords
non-thermal plasma (NTP) catalysis
Cu catalyst
CO2 hydrogenation
methanol
siliceous mesocellular foam (MCF)
|
Corresponding Author(s):
Xiaolei Fan,Huanhao Chen
|
Just Accepted Date: 07 March 2024
Issue Date: 24 April 2024
|
|
1 |
Y Ou , C Roney , J Alsalam , K Calvin , J Creason , J Edmonds , A A Fawcett , P Kyle , K Narayan , P O’Rourke . et al.. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 degrees C and 2 degrees C futures. Nature Communications, 2021, 12(1): 6245
https://doi.org/10.1038/s41467-021-26509-z
|
2 |
A M Alamer , M Ouyang , F H Alshafei , M A Nadeem , Y Alsalik , J T Miller , M Flytzani-Stephanopoulos , E C H Sykes , V Manousiouthakis , N M Eagan . Design of dilute palladium-indium alloy catalysts for the selective hydrogenation of CO2 to methanol. ACS Catalysis, 2023, 13(15): 9987–9996
https://doi.org/10.1021/acscatal.3c01861
|
3 |
A Saravanan , P Senthil Kumar , D V N Vo , S Jeevanantham , V Bhuvaneswari , V Anantha Narayanan , P R Yaashikaa , S Swetha , B Reshma . A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236: 116515
https://doi.org/10.1016/j.ces.2021.116515
|
4 |
C Kim , C-J Yoo , H-S Oh , B K Min , U Lee . Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65: 102239
|
5 |
S Sun , H Sun , P T Williams , C Wu . Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559
https://doi.org/10.1039/D1SE00797A
|
6 |
R P Ye , J Ding , W Gong , M D Argyle , Q Zhong , Y Wang , C K Russell , Z Xu , A G Russell , Q Li , M Fan , Y G Yao . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698
https://doi.org/10.1038/s41467-019-13638-9
|
7 |
H Yang , C Zhang , P Gao , H Wang , X Li , L Zhong , W Wei , Y Sun . A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017, 7(20): 4580–4598
https://doi.org/10.1039/C7CY01403A
|
8 |
F C Meunier , I Dansette , A Paredes-Nunez , Y Schuurman . Cu-bound formates are main reaction intermediates during CO2 hydrogenation to methanol over Cu/ZrO2. Angewandte Chemie International Edition, 2023, 62(29): e202303939
https://doi.org/10.1002/anie.202303939
|
9 |
B Lu , F Wu , X Li , C Luo , L Zhang . Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology, 2024, 10: 100–173
https://doi.org/10.1016/j.ccst.2023.100173
|
10 |
P S Murthy , L Wilson , X Zhang , W Liang , J Huang . Ni-doped metal-azolate framework-6 derived carbon as a highly active catalyst for CO2 conversion through the CO2 hydrogenation reaction. Carbon Capture Science & Technology, 2023, 7: 100–104
https://doi.org/10.1016/j.ccst.2023.100104
|
11 |
J L Snider , V Streibel , M A Hubert , T S Choksi , E Valle , D C Upham , J Schumann , M S Duyar , A Gallo , F Abild-Pedersen . et al.. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol. ACS Catalysis, 2019, 9(4): 3399–3412
https://doi.org/10.1021/acscatal.8b04848
|
12 |
A Zachopoulos , E Heracleous . Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: a thermodynamic analysis. Journal of CO2 Utilization, 2017, 21: 360–367
|
13 |
S Xu , H Chen , X Fan . Rational design of catalysts for non-thermal plasma (NTP) catalysis: a reflective review. Catalysis Today, 2023, 419: 114–144
https://doi.org/10.1016/j.cattod.2023.114144
|
14 |
Y Zhang , B Wang , Z Ji , Y Jiao , Y Shao , H Chen , X Fan . Plasma-catalytic CO2 methanation over NiFen/(Mg, Al)Ox catalysts: catalyst development and process optimisation. Chemical Engineering Journal, 2023, 465: 142855
https://doi.org/10.1016/j.cej.2023.142855
|
15 |
Y Sun , J Wu , Y Wang , J Li , N Wang , J Harding , S Mo , L Chen , P Chen , M Fu , D Ye , J Huang , X Tu . Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au, 2022, 2(8): 1800–1810
https://doi.org/10.1021/jacsau.2c00028
|
16 |
D Y Kim , H Ham , X Chen , S Liu , H Xu , B Lu , S Furukawa , H H Kim , S Takakusagi , K Sasaki , T Nozaki . Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. Journal of the American Chemical Society, 2022, 144(31): 14140–14149
https://doi.org/10.1021/jacs.2c03764
|
17 |
Y Wang , W Yang , S Xu , S Zhao , G Chen , A Weidenkaff , C Hardacre , X Fan , J Huang , X Tu . Shielding protection by mesoporous catalysts for improving plasma-catalytic ambient ammonia synthesis. Journal of the American Chemical Society, 2022, 144(27): 12020–12031
https://doi.org/10.1021/jacs.2c01950
|
18 |
S Xu , S Chansai , C Stere , B Inceesungvorn , A Goguet , K Wangkawong , S F R Taylor , N Al-Janabi , C Hardacre , P A Martin . et al.. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma. Nature Catalysis, 2019, 2(2): 142–148
https://doi.org/10.1038/s41929-018-0206-2
|
19 |
Q Jin , S Chen , X Meng , R Zhou , M Xu , M Yang , H Xu , X Fan , H Chen . Methanol steam reforming for hydrogen production over Ni/ZrO2 catalyst: comparison of thermal and non-thermal plasma catalysis. Catalysis Today, 2024, 425: 114360
https://doi.org/10.1016/j.cattod.2023.114360
|
20 |
R Vakili , R Gholami , C E Stere , S Chansai , H Chen , S M Holmes , Y Jiao , C Hardacre , X Fan . Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260: 118–195
https://doi.org/10.1016/j.apcatb.2019.118195
|
21 |
X Jiang , X Nie , X Guo , C Song , J G Chen . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984–8034
https://doi.org/10.1021/acs.chemrev.9b00723
|
22 |
B Eliasson , U Kogelschatz , B Xue , L M Zhou . Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
https://doi.org/10.1021/ie9709401
|
23 |
A Bill , B Eliasson , U Kogelschatz , L M Zhou . Comparison of CO2 hydrogenation in a catalytic reactor and in a dielectric-barrier discharge. Studies in Surface Science and Catalysis, 1998, 114: 541–544
https://doi.org/10.1016/S0167-2991(98)80816-1
|
24 |
L Wang , Y Yi , H Guo , X Tu . Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
https://doi.org/10.1021/acscatal.7b02733
|
25 |
Z Cui , S Meng , Y Yi , A Jafarzadeh , S Li , E C Neyts , Y Hao , L Li , X Zhang , X Wang . et al.. Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catalysis, 2022, 12(2): 1326–1337
https://doi.org/10.1021/acscatal.1c04678
|
26 |
Y L Men , Y Liu , Q Wang , Z H Luo , S Shao , Y B Li , Y X Pan . Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure. Chemical Engineering Science, 2019, 200: 167–175
https://doi.org/10.1016/j.ces.2019.02.004
|
27 |
X Zhang , Z Sun , Y Shan , H Pan , Y Jin , Z Zhu , L Zhang , K Li . Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catalysis Science & Technology, 2023, 13(8): 2529–2539
https://doi.org/10.1039/D2CY02015G
|
28 |
M Ronda-Lloret , Y Wang , P Oulego , G Rothenberg , X Tu , N R Shiju . CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17397–17407
https://doi.org/10.1021/acssuschemeng.0c05565
|
29 |
S Meng , L Wu , M Liu , Z Cui , Q Chen , S Li , J Yan , L Wang , X Wang , J Qian , H Guo , J Niu , A Bogaerts , Y Yi . Plasma‐driven CO2 hydrogenation to CH3OH over Fe2O3/γ‐Al2O3 catalyst. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(10): e18154
https://doi.org/10.1002/aic.18154
|
30 |
R Michiels , Y Engelmann , A Bogaerts . Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH. Journal of Physical Chemistry C, 2020, 124(47): 25859–25872
https://doi.org/10.1021/acs.jpcc.0c07632
|
31 |
J WangK ZhangA BogaertsV Meynen. 3D porous catalysts for plasma-catalytic dry reforming of methane: how does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, 2023, 464: 142574
|
32 |
O Daoura , M-N Kaydouh , N El-Hassan , P Massiani , F Launay , M Boutros . Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). Journal of CO2 Utilization, 2018, 24: 112–119
|
33 |
X Yan , L Zhang , Y Zhang , K Qiao , Z Yan , S Komarneni . Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918–924
https://doi.org/10.1016/j.cej.2011.01.066
|
34 |
P Bai , Z Zhao , Y Zhang , Z He , Y Liu , C Wang , S Ma , P Wu , L Zhao , S Mintova . et al.. Rational design of highly efficient PdIn-In2O3 interfaces by a capture-alloying strategy for benzyl alcohol partial oxidation. ACS Applied Materials & Interfaces, 2023, 15(15): 19653–19664
https://doi.org/10.1021/acsami.3c00810
|
35 |
P Wu , Y Cao , L Zhao , Y Wang , Z He , W Xing , P Bai , S Mintova , Z Yan . Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. Journal of Catalysis, 2019, 375: 32–43
https://doi.org/10.1016/j.jcat.2019.05.003
|
36 |
S Wang , L Song , Z Qu . Cu/ZnAl2O4 catalysts prepared by ammonia evaporation method: improving methanol selectivity in CO2 hydrogenation via regulation of metal-support interaction. Chemical Engineering Journal, 2023, 469: 144008
https://doi.org/10.1016/j.cej.2023.144008
|
37 |
S Kuld , M Thorhauge , H Falsig , C F Elkjær , S Helveg , I Chorkendorff , J Sehested . Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352(6288): 969–974
https://doi.org/10.1126/science.aaf0718
|
38 |
M Turco , G Bagnasco , C Cammarano , P Senese , U Costantino , M Sisani . Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Applied Catalysis B: Environmental, 2007, 77(1-2): 46–57
https://doi.org/10.1016/j.apcatb.2007.07.006
|
39 |
F Arena , R Giovenco , T Torre , A Venuto , A Parmaliana . Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Applied Catalysis B: Environmental, 2003, 45(1): 51–62
https://doi.org/10.1016/S0926-3373(03)00163-2
|
40 |
K Xiao , Q Wang , X Qi , L Zhong . For better industrial Cu/ZnO/Al2O3 methanol synthesis catalyst: a compositional study. Catalysis Letters, 2017, 147(6): 1581–1591
https://doi.org/10.1007/s10562-017-2022-8
|
41 |
S Navarro-Jaén , M Virginie , J Thuriot-Roukos , R Wojcieszak , A Y Khodakov . Structure-performance correlations in the hybrid oxide-supported copper-zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57(5): 3268–3279
https://doi.org/10.1007/s10853-022-06890-w
|
42 |
S Xu , S Chansai , S Xu , C E Stere , Y Jiao , S Yang , C Hardacre , X Fan . CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 2020, 10(21): 12828–12840
https://doi.org/10.1021/acscatal.0c03620
|
43 |
H Chen , Y Mu , Y Shao , S Chansai , S Xu , C E Stere , H Xiang , R Zhang , Y Jiao , C Hardacre . et al.. Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catalysis Science & Technology, 2019, 9(15): 4135–4145
https://doi.org/10.1039/C9CY00590K
|
44 |
H Chen , Y Mu , Y Shao , S Chansai , H Xiang , Y Jiao , C Hardacre , X Fan . Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 2020, 66(4): e16853
https://doi.org/10.1002/aic.16853
|
45 |
Q Z Zhang , A Bogaerts . Propagation of a plasma streamer in catalyst pores. Plasma Sources Science & Technology, 2018, 27(3): 035009
https://doi.org/10.1088/1361-6595/aab47a
|
46 |
Q Z Zhang , A Bogaerts . Plasma streamer propagation in structured catalysts. Plasma Sources Science & Technology, 2018, 27(10): 105013
https://doi.org/10.1088/1361-6595/aae430
|
47 |
S Kattel , P J Ramírez , J G Chen , J A Rodriguez , P Liu . Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299
https://doi.org/10.1126/science.aal3573
|
48 |
Y Yan , R J Wong , Z Ma , F Donat , S Xi , S Saqline , Q Fan , Y Du , A Borgna , Q He . et al.. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306: 121098
https://doi.org/10.1016/j.apcatb.2022.121098
|
49 |
W Wang , Z Qu , L Song , Q Fu . CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. Journal of Energy Chemistry, 2020, 40: 22–30
https://doi.org/10.1016/j.jechem.2019.03.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|