Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (7) : 76    https://doi.org/10.1007/s11705-024-2432-2
Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction
Ning Yang, Tingjun Fu(), Chuntao Cao, Xueqing Wu, Huiling Zheng, Zhong Li
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China
 Download: PDF(1969 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Developing hierarchical and nanoscale ZSM-5 catalysts for diffusion-limited reactions has received ever-increasing attention. Here, ZSM-5 architecture integrated with hierarchical pores and nanoscale crystals was successfully prepared via in situ self-assembly of nanoparticles-coated silicalite-1. First, the oriented attachment of amorphous nanoparticles on external surface of silicalite-1 was achieved by controlling the alkalinity of Si-Al coating solution. The partial exposure of the external surface of silicalite-1 ensured the uniform removal of silicon in the bulk phase for the creation of hierarchical pores during the subsequent desilication-recrystallization. The uniform removal of silicon species in the bulk phase was mainly due to the synergistic effect of surface protection and alkaline etching, which could be balanced by regulating the relative amount of tetrapropylammonium cation and OH in desilication-recrystallization solution. Importantly, the removed silicon from silicalite-1 recrystallized and in situ assembled into final ZSM-5 nanocrystals induced by surface Si-Al nanoparticles. The hierarchical pores and nanoscale crystals on this integrated architecture not only promoted the removal of coke precursors from micropores but also provided large external specific surface (91 m2·g–1) for coke deposition. Consequently, a much longer catalytic lifetime was achieved for methanol-to-aromatics reaction compared to conventional hollow structure ZSM-5 (84 h vs 46 h), with relatively high stability.

Keywords hierarchical ZSM-5      nanocrystal      integrated architecture      diffusion      coke     
Corresponding Author(s): Tingjun Fu   
Just Accepted Date: 28 February 2024   Issue Date: 27 May 2024
 Cite this article:   
Ning Yang,Tingjun Fu,Chuntao Cao, et al. Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction[J]. Front. Chem. Sci. Eng., 2024, 18(7): 76.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2432-2
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I7/76
Fig.1  Schematic diagram of the synthetic route of (a) HIZ@NZ5 and (e) HOZ5; TEM images: (b, h) S-1; (c1) S-1@NZ5; (d1) HIZ@NZ5; (f1) HOZ5; (g1) S-1@Z5; SEM images: (c2) S-1@NZ5; (d2) HIZ@NZ5; (f2) HOZ5; (g2) S-1@Z5.
Fig.2  (a) XRD patterns; (b) relative crystallinity; (c) N2 adsorption-desorption isotherms; and (d) pore size distribution of S-1@NZ5, HIZ@NZ5, S-1@Z5 and HOZ5.
SampleSurface area/(m2·g–1)Pore volume/(cm3·g–1)Relative crystallinity/%
SBETa)Smicrob)Sexterc)Vtotald)Vmicroe)Vmesof)
S-1@NZ53752551200.420.120.3042
HIZ@NZ5384304800.510.150.3689
S-1@Z5360341190.220.160.06100
HOZ5383355280.340.160.1882
Tab.1  Textural properties of S-1@NZ5, HIZ@NZ5, S-1@Z5 and HOZ5
Fig.3  TEM images of the parent and subsequent desilication-recrystallization samples showing the influence of alkalinity of growth solution on S-1 seed secondary growth.
Desilication- recrystallization conditionsSurface area/(m2·g–1)Pore volume/(cm3·g–1)
SBETSmicroSexterVtotalVmicroVmeso
0.15 mol·L–1343311310.340.160.18
0.15 mol·L–1 + 0.15 mol·L–1367334330.420.170.23
0.30 mol·L–1384304800.510.150.36
Tab.2  Textural properties of the samples obtained under different desilication-recrystallization conditions
Fig.4  TEM images of the samples obtained by desilication-recrystallization under different treatments using S-1@NZ5 as the parent, which was obtained from the growth solution with pH = 10.
Fig.5  TEM images of HIZ@NZ5 at different crystallization stages: (a) before crystallization; (b) 1 h; (c) 5 h; (d) 24 h.
Fig.6  Formation mechanism of hierarchical structure coated with small ZSM-5 crystals and hollow structure ZSM-5.
Fig.7  TEM images of the final integrated ZSM-5 architecture obtained with different SiO2/Al2O3 ratios of S-1 growth solution.
Fig.8  (a) Methanol conversion; (b) liquid hydrocarbon yield; (c) selectivity of benzene (B), ethylbenzene (EB), toluene (T), xylene (X), trimethylbenzene (TMB) and C9+A in aromatics; (d) aromatic distribution; (e) NH3-TPD profiles and (f) Py-IR spectra for HIZ@NZ5 with different SiO2/Al2O3 ratios and HOZ5.
Fig.9  (a) TG curves; (c) coke formation rate; (c) relationship between external specific surface area and lifetime; (d) GC-MS signals of soluble coke species in spent catalysts after reaction for 5 h.
1 N Rahimi , R Karimzadeh . Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Applied Catalysis A, General, 2011, 398(1–2): 1–17
https://doi.org/10.1016/j.apcata.2011.03.009
2 R Wang , Y Gong , P Wang , W He , Y Song , M Xin , Q Jiang , Y Sha , T Cao , H Song , W Lin . In situ crystal engineering on 3D-printed woodpile scaffolds: a monolith catalyst with highly accessible active sites for enhanced catalytic cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(26): 13945–13955
https://doi.org/10.1039/D3TA01645E
3 S M Alipour . Recent advances in naphtha catalytic cracking by nano ZSM-5: a review. Chinese Journal of Catalysis, 2016, 37(5): 671–680
https://doi.org/10.1016/S1872-2067(15)61091-9
4 S Suganuma , K Nakamura , A Okuda , N Katada . Enhancement of catalytic activity for toluene disproportionation by loading Lewis acidic nickel species on ZSM-5 zeolite. Molecular Catalysis, 2017, 435: 110–117
https://doi.org/10.1016/j.mcat.2017.03.029
5 N Liu , X Zhu , S Hua , D Guo , H Yue , B Xue , Y Li . A facile strategy for preparation of phosphorus modified HZSM-5 shape-selective catalysts and its performances in disproportionation of toluene. Catalysis Communications, 2016, 77: 60–64
https://doi.org/10.1016/j.catcom.2016.01.027
6 L Miao , Z Hong , X Wang , W Jia , G Zhao , Y Huang , Z Zhu . Catalytic synergistic effect of bis-ZSM-5 zeolite with different crystal sizes for xylene isomerization. Microporous and Mesoporous Materials, 2022, 332: 111718
https://doi.org/10.1016/j.micromeso.2022.111718
7 J Hao , P Feng , F Xin , Z Wang , Z Zhou , D Bao , Z Zhu . A comprehensive kinetics for p-xylene increment by isomerizing C8 aromatics over Pt/HZSM-5. Chemical Engineering Science, 2023, 268: 118425
https://doi.org/10.1016/j.ces.2022.118425
8 J Zhang , A Zhou , K Gawande , G Li , S Shang , C Dai , W Fan , Y Han , C Song , L Ren , A Zhang , X Guo . b-Axis-Oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805
https://doi.org/10.1021/acscatal.2c06384
9 Y Wang , X He , F Yang , Z Su , X Zhu . Control of framework aluminum distribution in MFI channels on the catalytic performance in alkylation of benzene with methanol. Industrial & Engineering Chemistry Research, 2020, 59(30): 13420–13427
https://doi.org/10.1021/acs.iecr.0c00366
10 Z Yan , D Chen , L Huang , J Liu , H Fu , Y Xiao , S Li . A theoretical insight into diffusion mechanism of benzene-methanol alkylation reaction in ZSM-5 zeolite. Microporous and Mesoporous Materials, 2022, 337: 111926
https://doi.org/10.1016/j.micromeso.2022.111926
11 J Li , M Liu , X Guo , S Xu , Y Wei , Z Liu , C Song . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination–realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106
https://doi.org/10.1021/acsami.7b07806
12 Z Liu , D Wu , S Ren , X Chen , M Qiu , G Liu , G Zeng , Y Sun . Facile one-pot solvent-free synthesis of hierarchical ZSM-5 for methanol to gasoline conversion. RSC Advances, 2016, 6(19): 15816–15820
https://doi.org/10.1039/C6RA00247A
13 P Liu , J Wang , L Ling , X Shen , X Li , R Zhang , B Wang . Suitable location of Lewis acid over ZnOH+/HZSM-5 catalysts effectively enhance dehydrogenation activity and catalyze the aromatization process of C6 olefins in MTA. Fuel, 2024, 357: 130000
https://doi.org/10.1016/j.fuel.2023.130000
14 B Bensafi , N Chouat , F Djafri . The universal zeolite ZSM-5: structure and synthesis strategies: a review. Coordination Chemistry Reviews, 2023, 496: 215397
https://doi.org/10.1016/j.ccr.2023.215397
15 P Peng , X Gao , Z Yan , S Mintova . Diffusion and catalyst efficiency in hierarchical zeolite catalysts. National Science Review, 2020, 7(11): 1726–1742
https://doi.org/10.1093/nsr/nwaa184
16 H Zhang , I B Samsudin , S Jaenicke , G K Chuah . Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catalysis Science & Technology, 2022, 12(19): 6024–6039
https://doi.org/10.1039/D2CY01325H
17 D Kerstens , B Smeyers , J Van Waeyenberg , Q Zhang , J Yu , B F Sels . State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Advanced Materials, 2020, 32(44): 2004690
https://doi.org/10.1002/adma.202004690
18 S Li , H Yang , S Wang , J Wang , W Fan , M Dong . Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology. Chemical Communications (Cambridge), 2022, 58(13): 2041–2054
https://doi.org/10.1039/D1CC05537B
19 J Grand , S N Talapaneni , A Vicente , C Fernandez , E Dib , H A Aleksandrov , G N Vayssilov , R Retoux , P Boullay , J P Gilson , V Valtchev , S Mintova . One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 2017, 16(10): 1010–1015
https://doi.org/10.1038/nmat4941
20 E Kianfar . Nanozeolites: synthesized, properties, applications. Journal of Sol-Gel Science and Technology, 2019, 91(2): 415–429
https://doi.org/10.1007/s10971-019-05012-4
21 W Zhang , X Bao , X Guo , X Wang . A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catalysis Letters, 1999, 60(1): 89–94
https://doi.org/10.1023/A:1019061714047
22 Z Wan , G K Li , C Wang , H Yang , D Zhang . Relating coke formation and characteristics to deactivation of ZSM-5 zeolite in methanol to gasoline conversion. Applied Catalysis A, General, 2018, 549: 141–151
https://doi.org/10.1016/j.apcata.2017.09.035
23 S Kim , G Park , M H Woo , G Kwak , S K Kim . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892
https://doi.org/10.1021/acscatal.8b04493
24 A Javdani , J Ahmadpour , F Yaripour . Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: a review. Microporous and Mesoporous Materials, 2019, 284: 443–458
https://doi.org/10.1016/j.micromeso.2019.04.063
25 C Li , M Moliner , A Corma . Building zeolites from precrystallized units: nanoscale architecture. Angewandte Chemie International Edition, 2018, 57(47): 15330–15353
https://doi.org/10.1002/anie.201711422
26 R Jain , A J Mallette , J D Rimer . Controlling nucleation pathways in zeolite crystallization: seeding conceptual methodologies for advanced materials design. Journal of the American Chemical Society, 2021, 143(51): 21446–21460
https://doi.org/10.1021/jacs.1c11014
27 H Mochizuki , T Yokoi , H Imai , S Namba , J N Kondo , T Tatsumi . Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Applied Catalysis A, General, 2012, 449: 188–197
https://doi.org/10.1016/j.apcata.2012.10.003
28 L Chen , M Sun , Z Wang , W Yang , Z Xie , B L Su . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
https://doi.org/10.1021/acs.chemrev.0c00016
29 Y Jiao , L Forster , S Xu , H Chen , J Han , X Liu , Y Zhou , J Liu , J Zhang , J Yu , C D’Agostino , X Fan . Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: converting tetrahedral extra-framework Al into framework sites by post treatment. Angewandte Chemie International Edition, 2020, 59(44): 19478–19486
https://doi.org/10.1002/anie.202002416
30 C Dai , A Zhang , L Li , K Hou , F Ding , J Li , D Mu , C Song , M Liu , X Guo . Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chemistry of Materials, 2013, 25(21): 4197–4205
https://doi.org/10.1021/cm401739e
31 C Dai , A Zhang , J Li , K Hou , M Liu , C Song , X Guo . Synthesis of yolk-shell HPW@Hollow silicalite-1 for esterification reaction. Chemical Communications, 2014, 50(37): 4846–4848
https://doi.org/10.1039/c4cc00693c
32 C Dai , A Zhang , M Liu , L Gu , X Guo , C Song . Hollow alveolus-like nanovesicle assembly with metal-encapsulated hollow zeolite nanocrystals. ACS Nano, 2016, 10(8): 7401–7408
https://doi.org/10.1021/acsnano.6b00888
33 C Dai , A Zhang , M Liu , X Guo , C Song . Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Advanced Functional Materials, 2015, 25(48): 7479–7487
https://doi.org/10.1002/adfm.201502980
34 N Ren , Z Yang , X Lv , J Shi , Y H Zhang , Y Tang . A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 2010, 131(1–3): 103–114
https://doi.org/10.1016/j.micromeso.2009.12.009
35 Y Zhai , X Zhang , F Wang , G Lv , T Jiang , Y Wu , M Li , M Li , Q Zhang , Y Liu . Racing crystallization mechanism for economical design of single-crystal hollow ZSM-5 with the broken limit of Si/Al ratio and improved mass transfer. ACS Applied Materials & Interfaces, 2021, 13(13): 15246–15260
https://doi.org/10.1021/acsami.1c00768
36 X Ou , S Xu , J M Warnett , S M Holmes , A Zaheer , A A Garforth , M A Williams , Y Jiao , X Fan . Creating hierarchies promptly: microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) foams. Chemical Engineering Journal, 2017, 312: 1–9
https://doi.org/10.1016/j.cej.2016.11.116
37 N Wang , J Li , W Sun , Y Hou , L Zhang , X Hu , Y Yang , X Chen , C Chen , B Chen , W Qian . Rational design of zinc/zeolite catalyst: selective formation of p-xylene from methanol to aromatics reaction. Angewandte Chemie International Edition, 2022, 61(10): e202201057
https://doi.org/10.1002/anie.202201057
38 S Li , J Li , M Dong , S Fan , T Zhao , J Wang , W Fan . Strategies to control zeolite particle morphology. Chemical Society Reviews, 2019, 48(3): 885–907
https://doi.org/10.1039/C8CS00774H
[1] FCE-23111-OF-YN_suppl_1 Download
[1] Hyungmin Jeon, Susung Lee, Jeong-Chul Kim, Minkee Choi. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98-.
[2] Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes[J]. Front. Chem. Sci. Eng., 2024, 18(6): 62-.
[3] Yunyu Guo, Yiran Wang, Yuewen Shao, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Xun Hu. Mg-Al-hydrotalcite with alkaline sites protects Ni/KIT-6 from formation of amorphous coke in glycerol steam reforming via tailoring reaction intermediates[J]. Front. Chem. Sci. Eng., 2024, 18(4): 38-.
[4] Yayun Zhao, Dechuan Zhao, Chunlong Kong, Yichao Lin, Xuezhen Wang, Liang Chen. Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles[J]. Front. Chem. Sci. Eng., 2024, 18(2): 18-.
[5] Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang. Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134[J]. Front. Chem. Sci. Eng., 2023, 17(7): 853-866.
[6] Jianzhong Ma, Lu Wen, Qianqian Fan, Siying Wei, Xueyun Hu, Fan Yang. All-inorganic TiO2/Cs2AgBiBr6 composite as highly efficient photocatalyst under visible light irradiation[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1925-1936.
[7] Katarzyna Majerczak, Ophelie Squillace, Zhiwei Shi, Zhanping Zhang, Zhenyu J. Zhang. Molecular diffusion in ternary poly(vinyl alcohol) solutions[J]. Front. Chem. Sci. Eng., 2022, 16(6): 1003-1016.
[8] Shitong Cui, Jun Ge. Diffusion process in enzyme–metal hybrid catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 921-929.
[9] Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
[10] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[11] Yun Liu, Jiangyuan Qu, Xuehui Wu, Kai Zhang, Yuan Zhang. Reaction kinetics and internal diffusion of Zhundong char gasification with CO2[J]. Front. Chem. Sci. Eng., 2021, 15(2): 373-383.
[12] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[13] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[14] Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation[J]. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
[15] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed