| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries  | 
  					 
  					  										
						Yan Wang1, Ning Ding1, Rui Zhang1( ), Guanhua Jin2( ), Dan Sun1, Yougen Tang1, Haiyan Wang1( ) | 
					 
															
						1. Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China 2. College of Energy and Chemical Engineering, Xinjiang Institute of Technology, Aksu Prefecture 843100, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				sodium-ion batteries  
																		  																																				layered oxide  
																		  																																				industrialization  
																		  																																				development prospect  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Rui Zhang,Guanhua Jin,Haiyan Wang   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 19 April 2024  
																																																													Issue Date: 21 June 2024
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      L Zhao , T Zhang , W Li , T Li , L Zhang , X Zhang , Z Wang . Engineering of sodium-ion batteries: opportunities and challenges. Engineering, 2023, 24: 172–183 
														     														     	 
														     															     		https://doi.org/10.1016/j.eng.2021.08.032
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      C Arbizzani , G Lacarbonara . From Volta’s pile to lithium ion battery: 200 years of energy. Pure and Applied Chemistry, 2023, 95(11): 1131–1139 
														     														     	 
														     															     		https://doi.org/10.1515/pac-2023-0502
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      W Zuo , A Innocenti , M Zarrabeitia , D Bresser , Y Yang , S Passerini . Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Accounts of Chemical Research, 2023, 56(3): 284–296 
														     														     	 
														     															     		https://doi.org/10.1021/acs.accounts.2c00690
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      N Yabuuchi , K Kubota , M Dahbi , S Komaba . Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682 
														     														     	 
														     															     		https://doi.org/10.1021/cr500192f
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      J Robinson , D Finegan , T Heenan , K Smith , E Kendrick , D Brett , P Shearing . Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010–011019 
														     														     	 
														     															     		https://doi.org/10.1115/1.4038518
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      P Gupta , S Pushpakanth , M Haider , S Basu . Understanding the design of cathode materials for Na-ion batteries. ACS Omega, 2022, 7(7): 5605–5614 
														     														     	 
														     															     		https://doi.org/10.1021/acsomega.1c05794
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      W Wang , Y Gang , Z Hu , Z Yan , W Li , Y Li , Q Gu , Z Wang , S Chou , H Liu . et al.. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nature Communications, 2020, 11(1): 980 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-020-14444-4
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      L Zhu , H Wang , D Sun , Y Tang , H Wang . A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(41): 21387–21407 
														     														     	 
														     															     		https://doi.org/10.1039/D0TA07872G
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      L Zhu , M Wang , S Xiang , D Sun , Y Tang , H Wang . A medium-entropy phosphate cathode with multielectron redox reaction for advanced sodium-ion batteries. Advanced Energy Materials, 2023, 13(36): 2302046 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202302046
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      R Zhang , H Chen , H Yue . Room-temperature synthesis of layered open framework cathode for sodium-ion batteries. Chinese Chemical Letters, 2023, 34(5): 107580 
														     														     	 
														     															     		https://doi.org/10.1016/j.cclet.2022.06.003
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      Q Zhang , L Fu , J Luan , X Huang , Y Tang , H Xie , H Wang . Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395: 305–313 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2018.05.085
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      A Bauer , J Song , S Vail , W Pan , J Barker , Y Lu . The scale-up and commercialization of nonaqueous Na-ion battery technologies. Advanced Energy Materials, 2018, 8(17): 1702869 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201702869
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      C Wang , G Wang , E Wang , T Wu , H Yu . Synthesis and modification of lithium-ion battery cathode materials. Chemical Industry and Engineering Progress, 2021, 40(9): 4998–5011
														     															 | 
																  
																														
															| 14 | 
															 
														      S Chen , C Wu , L Shen , C Zhu , Y Huang , K Xi , J Maier , Y Yu . Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Advanced Materials, 2017, 29(48): 1700431 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201700431
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														     Y HuY LuL Chen. Sodium-ion Battery Science and Technology. Beijing: Science Press, 2020, 448–450 (in Chinese)
														     															 | 
																  
																														
															| 16 | 
															 
														      A Ma , Z Yin , J Wang , Z Wang , H Guo , G Yan . Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26(4): 1797–1804 
														     														     	 
														     															     		https://doi.org/10.1007/s11581-019-03437-z
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      X Luo , Q Huang , Y Feng , C Zhang , C Liang , L Zhou , W Wei . Constructing a composite structure by a gradient Mg2+ doping strategy for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(46): 51846–51854 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.2c13354
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      R Zhang , Y Wang , R Liu , D Sun , Y Tang , Z Xie , H Wang . A multifunctional cathode sodiation additive for high-performance sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(48): 25546–25555 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA07910K
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      J Chen , X Li , L Mi , W Chen . Emerging presodiation strategies for long-life sodium-ion batteries. Energy Lab, 2023, 1(3): 230008 
														     														     	 
														     															     		https://doi.org/10.54227/elab.20230008
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														     X LiangJ Y HwangY K Sun. Practical cathodes for sodium-ion batteries: who will take the crown? Advanced Energy Materials, 2023, 13(37): 2301975
														     															 | 
																  
																														
															| 21 | 
															 
														      Z Liu , J Wu , J Zeng , F Li , C Peng , D Xue , M Zhu , J Liu . Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Advanced Energy Materials, 2023, 13(29): 2301471 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202301471
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      X Yuan , Y Guo , L Gan , X Yang , W He , X Zhang , Y Yin , S Xin , H Yao , Z Huang . et al.. A universal strategy toward air-stable and high-rate P3 layered oxide cathodes for Na-ion batteries. Advanced Functional Materials, 2022, 32(17): 2111466 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202111466
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      A Rudola , A Rennie , R Heap , S Meysami , A Lowbridge , F Mazzali , R Sayers , C Wright , J Barker . Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(13): 8279–8302 
														     														     	 
														     															     		https://doi.org/10.1039/D1TA00376C
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      L Mu , S Xu , Y Li , Y Hu , H Li , L Chen , X Huang . Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 2015, 27(43): 6928–6933 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201502449
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      L Kong , H Liu , Y Zhu , J Li , Y Su , H Li , H Hu , Y Liu , M Yang , Z Jian . et al.. Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Science China. Chemistry, 2024, 67: 191–213
														     															 | 
																  
																														
															| 26 | 
															 
														      X Zhu , S Xu , X Wang , M Liu , Y Cheng , P Wang . Sodium composite oxide cathode materials: phase regulation, electrochemical performance and reaction mechanism. Batteries & Supercaps, 2023, 6(3): e202200473 
														     														     	 
														     															     		https://doi.org/10.1002/batt.202200473
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      J Xiao , F Zhang , K Tang , X Li , D Wang , Y Wang , H Liu , M Wu , G Wang . Rational design of a P2-type spherical layered oxide cathode for high-performance sodium-ion batteries. ACS Central Science, 2019, 5(12): 1937–1945 
														     														     	 
														     															     		https://doi.org/10.1021/acscentsci.9b00982
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      Z Li , R Gao , J Zhang , X Zhang , Z Hu , X Liu . New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3453–3461 
														     														     	 
														     															     		https://doi.org/10.1039/C5TA10589G
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      S Zhang , Y Guo , Y Zhou , X Zhang , Y Niu , E Wang , L Huang , P An , J Zhang , X Yang . et al.. P3/O3 integrated layered oxide as high-power and long-life cathode toward Na-ion batteries. Small, 2021, 17(10): 2007236 
														     														     	 
														     															     		https://doi.org/10.1002/smll.202007236
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      S Kim , J Hong , Y Kang . Spray-assisted synthesis of layered P2-type Na0.67Mn0.67Cu0.33O2 powders and their superior electrochemical properties for Na-ion battery cathode. Applied Surface Science, 2023, 611: 155673 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2022.155673
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      X Luo , Q Huang , Y Feng , L Zhou , W Wei . Designing layered Na3Ni2SbO6 cathodes with hierarchical and hollow nanostructure for sodium-ion batteries. ChemElectroChem, 2022, 9(20): e202200821 
														     														     	 
														     															     		https://doi.org/10.1002/celc.202200821
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      Z Feng , R Rajagopalan , S Zhang , D Sun , Y Tang , Y Ren , H Wang . A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode. Advanced Science, 2021, 8(2): 2001809 
														     														     	 
														     															     		https://doi.org/10.1002/advs.202001809
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      M Leng , J Bi , W Wang , R Liu , C Xia . Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics, 2019, 25(3): 1105–1115 
														     														     	 
														     															     		https://doi.org/10.1007/s11581-018-2830-x
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      H Wang , X Liao , Y Yang , X Yan , Y He , Z Ma . Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of the Electrochemical Society, 2016, 163(3): A565–A570 
														     														     	 
														     															     		https://doi.org/10.1149/2.0011605jes
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      L Xu , F Zhou , J Kong , H Zhou , Q Zhang , Q Wang , G Yan . Influence of precursor phase on the structure and electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 cathode materials. Solid State Ionics, 2018, 324: 49–58 
														     														     	 
														     															     		https://doi.org/10.1016/j.ssi.2018.06.010
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      Z Wu , Y Zhou , J Zeng , C Hai , Y Sun , X Ren , Y Shen , X Li . Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries. Ceramics International, 2023, 49(10): 15851–15864 
														     														     	 
														     															     		https://doi.org/10.1016/j.ceramint.2023.01.180
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      Z Wu , Y Zhou , C Hai , J Zeng , Y Sun , X Ren , Y Shen , X Li , G Zhang . Analysis of the growth mechanism of hierarchical structure Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of LiNi0.8Co0.1Mn0.1O2 in the presence of aqueous ammonia. Applied Surface Science, 2023, 619: 156379 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2023.156379
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      L Xu , F Zhou , J Kong , H Zhou , Q Zhang . Effect of testing temperature on the electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 and its Ti3C2(OH)2 modification as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 804: 353–363 
														     														     	 
														     															     		https://doi.org/10.1016/j.jallcom.2019.07.027
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      M Lee , Y Kang , S Myung , Y Sun . Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50(4): 939–948 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2004.07.038
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      S Zhang , C Deng , B Fu , S Yang , L Ma . Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technology, 2010, 198(3): 373–380 
														     														     	 
														     															     		https://doi.org/10.1016/j.powtec.2009.12.002
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      T Wang , Z H Liu , L Fan , Y Han , X Tang . Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation. Powder Technology, 2008, 187(2): 124–129 
														     														     	 
														     															     		https://doi.org/10.1016/j.powtec.2008.02.002
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      V Mhaske , S Jilkar , M Yadav . Minireview on layered transition metal oxides synthesis using coprecipitation for sodium ion batteries cathode material: advances and perspectives. Energy & Fuels, 2023, 37(21): 16221–16244 
														     														     	 
														     															     		https://doi.org/10.1021/acs.energyfuels.3c02861
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      W Hua , W Liu , M Chen , S Indris , Z Zheng , X Guo , M Bruns , T Wu , Y Chen , B Zhong . et al.. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232: 123–131 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2017.02.105
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      K Araño , B Armstrong , E Boeding , G Yang , H III Meyer , E Wang , R Korkosz , K Browning , T Malkowski , B Key . et al.. Functionalized silicon particles for enhanced half-and full-cell cycling of Si-based Li-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(8): 10554–10569 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.2c16978
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      S Fleischmann , M Mancini , P Axmann , U Golla-Schindler , U Kaiser , M Wohlfahrt-Mehrens . Insights into the impact of impurities and non-stoichiometric effects on the electrochemical performance of Li2MnSiO4. ChemSusChem, 2016, 9(20): 2982–2993 
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201600894
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														     W WangW ChouQ Ding. Nickel Cobalt Manganese Based Cathode Materials for Li-ion Batteries Technology Production and Application. Beijing: Chemical Industry Press, 2015, 3 (in Chinese)
														     															 | 
																  
																														
															| 47 | 
															 
														      T Yuan , S Li , Y Sun , J Wang , A Chen , Q Zheng , Y Zhang , L Chen , G Nam , H Che . et al.. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano, 2022, 16(11): 18058–18070 
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.2c04702
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      L Yu , H Dong , Y Chang , Z Cheng , K Xu , Y Feng , D Si , X Zhu , M Liu , B Xiao . et al.. Elucidation of the sodium kinetics in layered P-type oxide cathodes. Science China. Chemistry, 2022, 65(10): 2005–2014 
														     														     	 
														     															     		https://doi.org/10.1007/s11426-022-1364-1
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      Y Wang , K Tang , X Li , R Yu , X Zhang , Y Huang , G Chen , S Jamil , S Cao , X Xie . et al.. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chemical Engineering Journal, 2019, 372: 1066–1076 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2019.05.010
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      I Mohan , A Raj , K Shubham , D Lata , S Mandal , S Kumar . Potential of potassium and sodium-ion batteries as the future of energy storage: recent progress in anodic materials. Journal of Energy Storage, 2022, 55: 105625 
														     														     	 
														     															     		https://doi.org/10.1016/j.est.2022.105625
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														      K Chayambuka , G Mulder , D Danilov , P Notten . From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Advanced Energy Materials, 2020, 10(38): 2001310 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202001310
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														      M Ryu , Y Hong , S Lee , J Park . Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nature Communications, 2023, 14(1): 1316 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-023-37009-7
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														      J Deng , W Luo , X Lu , Q Yao , Z Wang , H Liu , H Zhou , S Dou . High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 2018, 8(5): 1701610 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201701610
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														      Y Li , Z Yang , S Xu , L Mu , L Gu , Y Hu , H Li , L Chen . Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Advanced Science, 2015, 2(6): 1500031 
														     														     	 
														     															     		https://doi.org/10.1002/advs.201500031
														     															     															     															 | 
																  
																														
															| 55 | 
															 
														      C Zhao , F Ding , Y Lu , L Chen , Y Hu . High-entropy layered oxide cathodes for sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(1): 264–269 
														     														     	 
														     															     		https://doi.org/10.1002/anie.201912171
														     															     															     															 | 
																  
																														
															| 56 | 
															 
														      Y Liu , K Han , D Peng , L Kong , Y Su , H Li , H Hu , J Li , H Wang , Z Fu . et al.. Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat, 2023, 5(6): e12422 
														     														     	 
														     															     		https://doi.org/10.1002/inf2.12422
														     															     															     															 | 
																  
																														
															| 57 | 
															 
														      J Feng , N Chernova , F Omenya , L Tong , A Rastogi , W Stanley . Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. Journal of Solid State Electrochemistry, 2018, 22(4): 1063–1078 
														     														     	 
														     															     		https://doi.org/10.1007/s10008-017-3847-1
														     															     															     															 | 
																  
																														
															| 58 | 
															 
														      A Schmidt , A Smith , H Ehrenberg . Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs. Journal of Power Sources, 2019, 425: 27–38 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2019.03.075
														     															     															     															 | 
																  
																														
															| 59 | 
															 
														      M Sathiya , K Hemalatha , K Ramesha , J Tarascon , A Prakash . Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 2012, 24(10): 1846–1853 
														     														     	 
														     															     		https://doi.org/10.1021/cm300466b
														     															     															     															 | 
																  
																														
															| 60 | 
															 
														      Y Sun , S Guo , H Zhou . Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy & Environmental Science, 2019, 12(3): 825–840 
														     														     	 
														     															     		https://doi.org/10.1039/C8EE01006D
														     															     															     															 | 
																  
																														
															| 61 | 
															 
														      W Zuo , X Liu , J Qiu , D Zhang , Z Xiao , J Xie , F Ren , J Wang , Y Li , F Ortiz . et al.. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nature Communications, 2021, 12(1): 4903 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-25074-9
														     															     															     															 | 
																  
																														
															| 62 | 
															 
														      F Fu , X Liu , X Fu , H Chen , L Huang , J Fan , J Le , Q Wang , W Yang , Y Ren . et al.. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13(1): 2826 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-022-30113-0
														     															     															     															 | 
																  
																														
															| 63 | 
															 
														      C Deng , P Skinner , Y Liu , M Sun , W Tong , C Ma , M Lau , R Hunt , P Barnes , J Xu . et al.. Li-substituted layered spinel cathode material for sodium ion batteries. Chemistry of Materials, 2018, 30(22): 8145–8154 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemmater.8b02614
														     															     															     															 | 
																  
																														
															| 64 | 
															 
														      C Yang , X Peng , J Yu , S Li , H Zhang . Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 629: 1061–1067 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2022.09.065
														     															     															     															 | 
																  
																														
															| 65 | 
															 
														      Y Sun . Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Letters, 2020, 5(4): 1278–1280 
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.0c00597
														     															     															     															 | 
																  
																														
															| 66 | 
															 
														      P Yan , J Zheng , M Gu , J Xiao , J Zhang , C Wang . Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 2017, 8(1): 14101 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms14101
														     															     															     															 | 
																  
																														
															| 67 | 
															 
														     H RyuK ParkC YoonY Sun. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of Materials, 2018, 30(3): 1155–1163
														     															 | 
																  
																														
															| 68 | 
															 
														      J Anderson , M Schieber . Order-disorder transitions in heat-treated rock-salt lithium ferrite. Journal of Physics and Chemistry of Solids, 1964, 25(9): 961–968 
														     														     	 
														     															     		https://doi.org/10.1016/0022-3697(64)90033-2
														     															     															     															 | 
																  
																														
															| 69 | 
															 
														      Z Liu , C Peng , J Wu , T Yang , J Zeng , F Li , A Kucernak , D Xue , Q Liu , M Zhu . et al.. Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries. Materials Today, 2023, 68: 22–33 
														     														     	 
														     															     		https://doi.org/10.1016/j.mattod.2023.06.021
														     															     															     															 | 
																  
																														
															| 70 | 
															 
														      S Kim , D Seo , X Ma , G Ceder , K Kang . Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201200026
														     															     															     															 | 
																  
																														
															| 71 | 
															 
														      H Yao , P Wang , Y Wang , X Yu , Y Yin , Y Guo . Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions. Advanced Energy Materials, 2017, 7(15): 1700189 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201700189
														     															     															     															 | 
																  
																														
															| 72 | 
															 
														      R Yazami , Y Ozawa , H Gabrisch , B Fultz . Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochimica Acta, 2004, 50(2-3): 385–390 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2004.03.048
														     															     															     															 | 
																  
																														
															| 73 | 
															 
														      I Saadoune , A Maazaz , M Ménétrier , C Delmas . On the NaxNi0.6Co0.4O2 system: physical and electrochemical studies. Journal of Solid State Chemistry, 1996, 122(1): 111–117 
														     														     	 
														     															     		https://doi.org/10.1006/jssc.1996.0090
														     															     															     															 | 
																  
																														
															| 74 | 
															 
														      W Zhang , C Yuan , J Zhu , T Jin , C Shen , K Xie . Air instability of Ni-rich layered oxides—a roadblock to large scale application. Advanced Energy Materials, 2023, 13(2): 2202993 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202202993
														     															     															     															 | 
																  
																														
															| 75 | 
															 
														      P Wang , Y You , Y Yin , Y Guo . Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Advanced Energy Materials, 2018, 8(8): 1701912 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201701912
														     															     															     															 | 
																  
																														
															| 76 | 
															 
														      M H Han , N Sharma , E Gonzalo , J C Pramudita , H E Brand , J Amo , T Rojo . Moisture exposed layered oxide electrodes as Na-ion battery cathodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18963–18975 
														     														     	 
														     															     		https://doi.org/10.1039/C6TA07950D
														     															     															     															 | 
																  
																														
															| 77 | 
															 
														      W Xu , R Dang , L Zhou , Y Yang , T Lin , Q Guo , F Xie , Z Hu , F Ding , Y Liu . et al.. Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces. Advanced Materials, 2023, 35(42): 2301314 
														     														     	 
														     															     		https://doi.org/10.1002/adma.202301314
														     															     															     															 | 
																  
																														
															| 78 | 
															 
														      H R Yao , P F Wang , Y Gong , J Zhang , X Yu , L Gu , C Ou Yang , Y Yin , E Hu , X Yang . et al.. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 2017, 139(25): 8440–8443 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.7b05176
														     															     															     															 | 
																  
																														
															| 79 | 
															 
														      Y Zhang , R Zhang , Y Huang . Air-stable NaxTMO2 cathodes for sodium storage. Frontiers in Chemistry, 2019, 7: 335 
														     														     	 
														     															     		https://doi.org/10.3389/fchem.2019.00335
														     															     															     															 | 
																  
																														
															| 80 | 
															 
														      Z Huang , Z Gu , Y Heng , E Ang , H Geng , X Wu . Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chemical Engineering Journal, 2023, 452: 139438 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2022.139438
														     															     															     															 | 
																  
																														
															| 81 | 
															 
														      Z Lu , J R Dahn . Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3–xMn2/3]O2. Chemistry of Materials, 2001, 13(4): 1252–1257 
														     														     	 
														     															     		https://doi.org/10.1021/cm000721x
														     															     															     															 | 
																  
																														
															| 82 | 
															 
														      V Duffort , E Talaie , R Black , L Nazar . Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chemistry of Materials, 2015, 27(7): 2515–2524 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemmater.5b00097
														     															     															     															 | 
																  
																														
															| 83 | 
															 
														      G Ross , J Watts , M Hill , P Morrissey . Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer, 2000, 41(5): 1685–1696 
														     														     	 
														     															     		https://doi.org/10.1016/S0032-3861(99)00343-2
														     															     															     															 | 
																  
																														
															| 84 | 
															 
														      G Ross , J Watts , M Hill , P Morrissey . Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413 
														     														     	 
														     															     		https://doi.org/10.1016/S0032-3861(00)00328-1
														     															     															     															 | 
																  
																														
															| 85 | 
															 
														      D Buchholz , L Chagas , C Vaalma , L Wu , S Passerini . Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13415–13421 
														     														     	 
														     															     		https://doi.org/10.1039/C4TA02627F
														     															     															     															 | 
																  
																														
															| 86 | 
															 
														      T Zhou , H Wang , Y Wang , P Jiao , Z Hao , K Zhang , J Xu , J Liu , Y He , Y Zhang . et al.. Stabilizing lattice oxygen in slightly Li-enriched nickel oxide cathodes toward high-energy batteries. Chem, 2022, 8(10): 2817–2830 
														     														     	 
														     															     		https://doi.org/10.1016/j.chempr.2022.07.023
														     															     															     															 | 
																  
																														
															| 87 | 
															 
														      J Feng , Z Chen , W Zhou , Z Hao . Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Materials Horizons, 2023, 10(11): 4686–4709 
														     														     	 
														     															     		https://doi.org/10.1039/D3MH00780D
														     															     															     															 | 
																  
																														
															| 88 | 
															 
														      P Venkatachalam , C Karra , K Duru , P Maram , A Madhavan , S Kalluri . Perspective-challenges and benchmarking in scale-up of Ni-rich cathodes for sodium-ion batteries. Journal of the Electrochemical Society, 2022, 169(7): 070536 
														     														     	 
														     															     		https://doi.org/10.1149/1945-7111/ac8248
														     															     															     															 | 
																  
																														
															| 89 | 
															 
														      C Yang , S Xin , L Mai , Y You . Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11(2): 2000974 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202000974
														     															     															     															 | 
																  
																														
															| 90 | 
															 
														      X Zheng , Z Cai , J Sun , J He , W Rao , J Wang , Y Zhang , Q Gao , B Han , K Xia . et al.. Nickel-rich layered oxide cathodes for lithium-ion batteries: failure mechanisms and modification strategies. Journal of Energy Storage, 2023, 58: 106405 
														     														     	 
														     															     		https://doi.org/10.1016/j.est.2022.106405
														     															     															     															 | 
																  
																														
															| 91 | 
															 
														      X Li , L Liang , M Su , L Wang , Y Zhang , J Sun , Y Liu , L Hou , C Yuan . Multi-level modifications enabling chemomechanically stable Ni-rich O3-layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries. Advanced Energy Materials, 2023, 13(9): 2203701 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202203701
														     															     															     															 | 
																  
																														
															| 92 | 
															 
														      F Ding , C Zhao , D Zhou , Q Meng , D Xiao , Q Zhang , Y Niu , Y Li , X Rong , Y Lu . et al.. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Materials, 2020, 30: 420–430 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2020.05.013
														     															     															     															 | 
																  
																														
															| 93 | 
															 
														      S Chu , Y Zhong , K Liao , Z Shao . Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17: 29–34 
														     														     	 
														     															     		https://doi.org/10.1016/j.cogsc.2019.01.006
														     															     															     															 | 
																  
																														
															| 94 | 
															 
														      G Liu , W Xu , J Wu , Y Li , L Chen , S Li , Q Ren , J Wang . Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. Journal of Energy Chemistry, 2023, 83: 53–61 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2023.04.029
														     															     															     															 | 
																  
																														
															| 95 | 
															 
														      T T Wei , X Liu , S J Yang , P F Wang , T F Yi . Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery. Journal of Energy Chemistry, 2023, 80: 603–613 
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2023.02.016
														     															     															     															 | 
																  
																														
															| 96 | 
															 
														      G Wan , W Dou , H Zhu , W Zhang , T Liu , L Wang , J Lu . Empowering higher energy sodium-ion battery cathode by oxygen chemistry. Interdisciplinary Materials, 2023, 2(3): 416–422 
														     														     	 
														     															     		https://doi.org/10.1002/idm2.12091
														     															     															     															 | 
																  
																														
															| 97 | 
															 
														      X Wu , J Guo , D Wang , G Zhong , M McDonald , Y Yang . P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 2015, 281: 18–26 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2014.12.083
														     															     															     															 | 
																  
																														
															| 98 | 
															 
														      Q Shen , Y Liu , X Zhao , J Jin , X Song , Y Wang , X Qu , L Jiao . Unexpectedly high cycling stability induced by a high charge cut-off voltage of layered sodium oxide cathodes. Advanced Energy Materials, 2023, 13(6): 2203216 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202203216
														     															     															     															 | 
																  
																														
															| 99 | 
															 
														      Y Han , Y Lei , J Ni , Y Zhang , Z Geng , P Ming , C Zhang , X Tian , J Shi , Y Guo . et al.. Single-crystalline cathodes for advanced Li-ion batteries: progress and challenges. Small, 2022, 18(43): 2107048 
														     														     	 
														     															     		https://doi.org/10.1002/smll.202107048
														     															     															     															 | 
																  
																														
															| 100 | 
															 
														      J Hu , L Li , Y Bi , J Tao , J Lochala , D Liu , B Wu , X Cao , S Chae , C Wang . et al.. Locking oxygen in lattice: a quantifiable comparison of gas generation in polycrystalline and single crystal Ni-rich cathodes. Energy Storage Materials, 2022, 47: 195–202 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2022.02.025
														     															     															     															 | 
																  
																														
															| 101 | 
															 
														      J Sun , C Sheng , X Cao , P Wang , P He , H Yang , Z Chang , X Yue , H Zhou . Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Advanced Functional Materials, 2022, 32(10): 2110295 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202110295
														     															     															     															 | 
																  
																														
															| 102 | 
															 
														      J Darga , A Manthiram . Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(47): 52729–52737 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.2c12098
														     															     															     															 | 
																  
																														
															| 103 | 
															 
														      Z Deng , A Manthiram . Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. Journal of Physical Chemistry C, 2011, 115(14): 7097–7103 
														     														     	 
														     															     		https://doi.org/10.1021/jp200375d
														     															     															     															 | 
																  
																														
															| 104 | 
															 
														      J Langdon , A Manthiram . A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 37: 143–160 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2021.02.003
														     															     															     															 | 
																  
																														
															| 105 | 
															 
														      T Kimijima , N Zettsu , K Teshima . Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Crystal Growth & Design, 2016, 16(5): 2618–2623 
														     														     	 
														     															     		https://doi.org/10.1021/acs.cgd.5b01723
														     															     															     															 | 
																  
																														
															| 106 | 
															 
														      S Gupta , Y Mao . Recent developments on molten salt synthesis of inorganic nanomaterials: a review. Journal of Physical Chemistry C, 2021, 125(12): 6508–6533 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpcc.0c10981
														     															     															     															 | 
																  
																														
															| 107 | 
															 
														      J Li , A Cameron , H Li , S Glazier , D Xiong , M Chatzidakis , J Allen , G Botton , J Dahn . Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(7): A1534–A1544 
														     														     	 
														     															     		https://doi.org/10.1149/2.0991707jes
														     															     															     															 | 
																  
																														
															| 108 | 
															 
														      X Fan , Y Liu , X Ou , J Zhang , B Zhang , D Wang , G Hu . Unravelling the influence of quasi single-crystalline architecture on high-voltage and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode for lithium-ion batteries. Chemical Engineering Journal, 2020, 393: 124709 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2020.124709
														     															     															     															 | 
																  
																														
															| 109 | 
															 
														      X He , J Wang , B Qiu , E Paillard , C Ma , X Cao , H Liu , M Stan , H Liu , T Gallash . et al.. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy, 2016, 27: 602–610 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2016.07.021
														     															     															     															 | 
																  
																														
															| 110 | 
															 
														      D Su , C Wang , H Ahn , G Wang . Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chemistry, 2013, 19(33): 10884–10889 
														     														     	 
														     															     		https://doi.org/10.1002/chem.201301563
														     															     															     															 | 
																  
																														
															| 111 | 
															 
														      V Pamidi , S Trivedi , S Behara , M Fichtner , M Reddy . Micron-sized single-crystal cathodes for sodium-ion batteries. iScience, 2022, 25(5): 104205 
														     														     	 
														     															     		https://doi.org/10.1016/j.isci.2022.104205
														     															     															     															 | 
																  
																														
															| 112 | 
															 
														      G Hu , S Zhang , K Du , Z Peng , J Zeng , Z Fang , L Li , Y Zhang , J Huang , D Guan . et al.. Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Ba ion. Journal of Power Sources, 2022, 542: 231784 
														     														     	 
														     															     		https://doi.org/10.1016/j.jpowsour.2022.231784
														     															     															     															 | 
																  
																														
															| 113 | 
															 
														      S Zhang , G Hu , K Du , Z Peng , L Li , Y Zhang , Y Cao . Enhanced cycle performance and synthesis of LiNi0.6Co0.2Mn0.2O2 single-crystal through the assist of Bi ion. Electrochimica Acta, 2023, 470: 143280 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2023.143280
														     															     															     															 | 
																  
																														
															| 114 | 
															 
														      J Hu , H Wang , B Xiao , P Liu , T Huang , Y Li , X Ren , Q Zhang , J Liu , X Ouyang . et al.. Challenges and approaches of single-crystal Ni-rich layered cathodes in lithium batteries. National Science Review, 2023, 10(12): nwad252 
														     														     	 
														     															     		https://doi.org/10.1093/nsr/nwad252
														     															     															     															 | 
																  
																														
															| 115 | 
															 
														      L Ni , S Zhang , A Di , W Deng , G Zou , H Hou , X Ji . Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Advanced Energy Materials, 2022, 12(31): 2201510 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202201510
														     															     															     															 | 
																  
																														
															| 116 | 
															 
														      L Zhang , J Huang , M Song , C Lu , W Wu , X Wu . Single-crystal growth of P2-type layered oxides with increased exposure of {010} planes for high-performance sodium-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(40): 47037–47048 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.3c10312
														     															     															     															 | 
																  
																														
															| 117 | 
															 
														      H Huang , L Zhang , H Tian , J Yan , J Tong , X Liu , H Zhang , H Huang , S Hao , J Gao . et al.. Pulse high temperature sintering to prepare single-crystal high nickel oxide cathodes with enhanced electrochemical performance. Advanced Energy Materials, 2023, 13(3): 2203188 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202203188
														     															     															     															 | 
																  
																														
															| 118 | 
															 
														      L Li , G Hu , Y Cao , D Gong , Q Fu , Z Peng , K Du . Effect of grain size of single crystalline cathode material of LiNi0.65Co0.07Mn0.28O2 on its electrochemical performance. Electrochimica Acta, 2022, 435: 141386 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2022.141386
														     															     															     															 | 
																  
																														
															| 119 | 
															 
														      A Sarkar , B Breitung , H Hahn . High entropy oxides: the role of entropy, enthalpy and synergy. Scripta Materialia, 2020, 187: 43–48 
														     														     	 
														     															     		https://doi.org/10.1016/j.scriptamat.2020.05.019
														     															     															     															 | 
																  
																														
															| 120 | 
															 
														      C Rost , E Sachet , T Borman , A Moballegh , E Dickey , D Hou , J Jones , S Curtarolo , J Maria . Entropy-stabilized oxides. Nature Communications, 2015, 6(1): 8485 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms9485
														     															     															     															 | 
																  
																														
															| 121 | 
															 
														      S Aamlid , M Oudah , J Rottler , A Hallas . Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023, 145(11): 5991–6006 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.2c11608
														     															     															     															 | 
																  
																														
															| 122 | 
															 
														      R Zhang , C Wang , P Zou , R Lin , L Ma , L Yin , T Li , W Xu , H Jia , Q Li . et al.. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610(7930): 67–73 
														     														     	 
														     															     		https://doi.org/10.1038/s41586-022-05115-z
														     															     															     															 | 
																  
																														
															| 123 | 
															 
														      C Lin , H Liu , J Kang , C Yang , C Li , H Chen , S Huang , C Ni , Y Chuang , B Chen . et al.. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2022, 51: 159–171 
														     														     	 
														     															     		https://doi.org/10.1016/j.ensm.2022.06.035
														     															     															     															 | 
																  
																														
															| 124 | 
															 
														      K Tian , H He , X Li , D Wang , Z Wang , R Zheng , H Sun , Y Liu , Q Wang . Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14943–14953 
														     														     	 
														     															     		https://doi.org/10.1039/D2TA02451A
														     															     															     															 | 
																  
																														
															| 125 | 
															 
														      H Wang , X Gao , S Zhang , Y Mei , L Ni , J Gao , H Liu , N Hong , B Zhang , F Zhu . et al.. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano, 2023, 17(13): 12530–12543 
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.3c02290
														     															     															     															 | 
																  
																														
															| 126 | 
															 
														      A Tripathi , A Rudola , S Gajjela , S Xi , P Balaya . Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25944–25960 
														     														     	 
														     															     		https://doi.org/10.1039/C9TA08991H
														     															     															     															 | 
																  
																														
															| 127 | 
															 
														      K Mukai , T Inoue , Y Kato , S Shirai . Superior low-temperature power and cycle performances of Na-ion battery over Li-ion battery. ACS Omega, 2017, 2(3): 864–872 
														     														     	 
														     															     		https://doi.org/10.1021/acsomega.6b00551
														     															     															     															 | 
																  
																														
															| 128 | 
															 
														      J Zhou , J Liu , Y Li , Z Zhao , P Zhou , X Wu , X Tang , J Zhou . Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries. Journal of Colloid and Interface Science, 2023, 638: 758–767 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2023.02.001
														     															     															     															 | 
																  
																														
															| 129 | 
															 
														      Q Shi , R Qi , X Feng , J Wang , Y Li , Z Yao , X Wang , Q Li , X Lu , J Zhang . et al.. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nature Communications, 2022, 13(1): 3205 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-022-30942-z
														     															     															     															 | 
																  
																														
															| 130 | 
															 
														      B Peng , Z Zhou , J Xu , N Ahmad , S Zeng , M Cheng , L Ma , Y Li , G Zhang . Crystal facet design in layered oxide cathode enables low-temperature sodium-ion batteries. ACS Materials Letters, 2023, 5(8): 2233–2242 
														     														     	 
														     															     		https://doi.org/10.1021/acsmaterialslett.3c00625
														     															     															     															 | 
																  
																														
															| 131 | 
															 
														      Y Li , Q Shi , X Yin , J Wang , J Wang , Y Zhao , J Zhang . Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402: 126181 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2020.126181
														     															     															     															 | 
																  
																														
															| 132 | 
															 
														      Z Deng , Y Liu , L Wang , N Fu , Y Li , Y Luo , J Wang , X Xiao , X Wang , X Yang . et al.. Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: a review. Materials Today, 2023, 69: 236–261 
														     														     	 
														     															     		https://doi.org/10.1016/j.mattod.2023.07.024
														     															     															     															 | 
																  
																														
															| 133 | 
															 
														      Y Xie , G Xu , H Che , H Wang , K Yang , X Yang , F Guo , Y Ren , Z Chen , K Amine . et al.. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chemistry of Materials, 2018, 30(15): 4909–4918 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemmater.8b00047
														     															     															     															 | 
																  
																														
															| 134 | 
															 
														      S Hwang , Y Lee , E Jo , K Y Chung , W Choi , S M Kim , W Y Chang . Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Applied Materials & Interfaces, 2017, 9(22): 18883–18888 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.7b04478
														     															     															     															 | 
																  
																														
															| 135 | 
															 
														      J Li , H Hu , J Wang , Y Xiao . Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries. Carbon Neutralization, 2022, 1(2): 96–116 
														     														     	 
														     															     		https://doi.org/10.1002/cnl2.19
														     															     															     															 | 
																  
																														
															| 136 | 
															 
														      J Jiao , K Wu , R Dang , N Li , X Deng , X Liu , Z Hu , X Xiao . A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation. Electrochimica Acta, 2021, 384: 138362 
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2021.138362
														     															     															     															 | 
																  
																														
															| 137 | 
															 
														      K Zhang , Z Xu , G Li , R Luo , C Ma , Y Wang , Y Zhou , Y Xia . Regulating phase transition and oxygen redox to achieve stable high-voltage O3-type cathode materials for sodium-ion batteries. Advanced Energy Materials, 2023, 13(45): 2302793 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202302793
														     															     															     															 | 
																  
																														
															| 138 | 
															 
														      L Zhang , J Deshmukh , H Hijazi , Z Ye , M Johnson , M George , J Dahn , M Metzger . Impact of calcium on air stability of Na[Ni1/3Fe1/3Mn1/3]O2 positive electrode material for sodium-ion batteries. Journal of the Electrochemical Society, 2023, 170(7): 070514 
														     														     	 
														     															     		https://doi.org/10.1149/1945-7111/ace55a
														     															     															     															 | 
																  
																														
															| 139 | 
															 
														      G Wan , B Peng , L Zhao , F Wang , L Yu , R Liu , G Zhang . Dual-strategy modification on P2Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries. SusMat, 2023, 3(1): 58–71 
														     														     	 
														     															     		https://doi.org/10.1002/sus2.105
														     															     															     															 | 
																  
																														
															| 140 | 
															 
														      X Chen , S Zheng , P Liu , Z Sun , K Zhu , H Li , Y Liu , L Jiao . Fluorine substitution promotes air-stability of P’2-type layered cathodes for sodium-ion batteries. Small, 2023, 19(4): 2205789 
														     														     	 
														     															     		https://doi.org/10.1002/smll.202205789
														     															     															     															 | 
																  
																														
															| 141 | 
															 
														      D Le , Z Zhou , J Li , H Fu , F Wu , Y Li , J Zheng , Z He . Air-stable manganese based cathode material enabled by organic protection layer for Na-ion batteries. Ceramics International, 2023, 49(10): 15451–15458 
														     														     	 
														     															     		https://doi.org/10.1016/j.ceramint.2023.01.130
														     															     															     															 | 
																  
																														
															| 142 | 
															 
														      R Zhang , J Liang , C Zeng , J Chen , Y Ma , T Zhai , H Li . Air degradation and rehealing of high-voltage Na0.7Ni0.35Sn0.65O2 cathode for sodium ion batteries. Science China Materials, 2023, 66(1): 88–96 
														     														     	 
														     															     		https://doi.org/10.1007/s40843-022-2166-9
														     															     															     															 | 
																  
																														
															| 143 | 
															 
														      C Xu , H Cai , Q Chen , X Kong , H Pan , Y Hu . Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(4): 5338–5345 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c21103
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |