Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 102    https://doi.org/10.1007/s11705-024-2453-x
Construction of spinel/biochar film/honeycomb monolithic catalyst for photothermal catalytic oxidation of VOCs
Xikai Lu1, Chunyan Zhang2, Meng Wu1, Wenjie Liu1, Bin Xue1, Chao Yao1(), Xiazhang Li1()
1. National-Local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China
2. Department of Materials Science and Engineering, University of Delaware, Delaware City, DE 19716, USA
 Download: PDF(1483 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photothermal catalytic oxidation emerges as a promising method for the removal of volatile organic compounds (VOCs). Herein, via sol-gel impregnation method, spinel CuMn2O4 was coated on attapulgite honeycombs with integrating biochar (BC) film as the second carrier, using chestnut shell as complexation agent. Various mass ratios of CuMn2O4 to chestnut shell was modulated to investigate the catalytic toluene degradation performance. Results indicated that the monolithic CuMn2O4/BC/honeycomb catalyst demonstrated superior photothermal catalytic toluene degradation with a low T90 (temperature at 90% degradation) of 263 °C when the mass ratio of CuMn2O4 to biomass was 1:4. The addition of BC film substantially increased the honeycomb's specific surface area and improved the photothermal conversion of spinel, leading to enhanced photothermal catalytic activity. This study presents a cost-effective strategy for eliminating industrial VOCs using clay-biomass based monolithic catalyst.

Keywords CuMn2O4      biochar      photothermal catalysis      attapulgite honeycomb      volatile organic compound     
Corresponding Author(s): Chao Yao,Xiazhang Li   
About author:

#usheng Xing, Yannan Jian and Xiaodan Zhao contributed equally to this work.]]>

Just Accepted Date: 19 April 2024   Issue Date: 30 May 2024
 Cite this article:   
Xikai Lu,Chunyan Zhang,Meng Wu, et al. Construction of spinel/biochar film/honeycomb monolithic catalyst for photothermal catalytic oxidation of VOCs[J]. Front. Chem. Sci. Eng., 2024, 18(9): 102.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2453-x
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/102
Fig.1  (a) X-ray diffraction (XRD) patterns of CuMn2O4 and CuMn2O4/BC-1:3–5; (b) locally enlarged XRD patterns from 34° to 38°.
Fig.2  Transmission electron microscopy (TEM) images of (a) CuMn2O4, (b) CuMn2O4/BC-1:3, (c) CuMn2O4/BC-1:4, (d) CuMn2O4/BC-1:5; (e) high resolution TEM images of CuMn2O4/BC-1:4; (f) selected area electron diffraction pattern of CuMn2O4/BC.
Fig.3  (a–c) Scanning electron microscopy (SEM) image of CuMn2O4/BC-1:4; (d) SEM of honeycomb; (e–f) SEM of CuMn2O4/BC/honeycomb.
Fig.4  (a) UV-Vis spectra of CuMn2O4 and CuMn2O4/BC-1:3–5; (b) Tauc curve; (c) infrared thermal imaging of CuMn2O4/BC.
Fig.5  (a) FTIR spectra of BC, CuMn2O4 and CuMn2O4/BC-1:3–5; (b) Raman spectra of BC, CuMn2O4/BC.
Fig.6  X-ray photoelectron spectroscopy (XPS) spectra of CuMn2O4 and CuMn2O4/BC, (a) survey scan; (b) Cu 2p; (c) Mn 2p; (d) O 1s; (e) C 1s.
Fig.7  (a) Electron paramagnetic resonance (EPR) spectra and (b) photoluminescence (PL) spectra of CuMn2O4 and CuMn2O4/BC-1:3–5.
Fig.8  H2-TPR spectra of CuMn2O4 and CuMn2O4/BC on honeycomb.
Fig.9  (a) Mechanical stability test of CuMn2O4/BC/honeycomb catalyst, (b) the degradation of toluene on different samples at different temperatures under dark and simulated sunlight irradiation, (c) toluene mineralization rate under dark and light, (d) the effect of GHSV on the catalytic activity of CuMn2O4/BC /honeycomb-1:4, (e) the effect of H2O on the catalytic activity at 300 °C, and (f) stability test of CuMn2O4/BC/honeycomb-1:4 sample at 300 °C for 20 h.
Fig.10  Schematic mechanism of photothermal catalytic oxidation of toluene over CuMn2O4/BC/honeycomb catalyst.
1 C A Weitekamp , T Stevens , M J Stewart , P Bhave , M I Gilmour . Health effects from freshly emitted versus oxidatively or photochemically aged air pollutants. Science of the Total Environment, 2020, 704: 135772
https://doi.org/10.1016/j.scitotenv.2019.135772
2 C Yang , G Miao , Y Pi , Q Xia , J Wu , Z Li , J Xiao . Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chemical Engineering Journal, 2019, 370: 1128–1153
https://doi.org/10.1016/j.cej.2019.03.232
3 L Qiu , C Li , S Zhang , S Wang , B Li , Z Cui , Y Tang , O Tursunov , X Hu . Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar. Chinese Journal of Chemical Engineering, 2024, 65: 200–211
https://doi.org/10.1016/j.cjche.2023.09.002
4 Y Li , S Wu , J Wu , Q Hu , C Zhou . Photothermocatalysis for efficient abatement of CO and VOCs. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(17): 8171–8194
https://doi.org/10.1039/D0TA00029A
5 W Zhu , X Shen , R Ou , M Murugesan , A Yuan , J Liu , X Hu , Z Yang , M Shen , F Yang . Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent. Chinese Journal of Chemical Engineering, 2022, 46: 194–206
https://doi.org/10.1016/j.cjche.2021.01.012
6 K K P Kumar , S Mallick , S Sakthivel . Cobalt-rich spinel oxide-based wide angular spectral selective absorber coatings for solar thermal conversion applications. Renewable Energy, 2023, 203: 334–344
https://doi.org/10.1016/j.renene.2022.12.072
7 C Shan , Y Wang , J Li , Q Zhao , R Han , C Liu , Q Liu . Recent advances of VOCs catalytic oxidation over spinel oxides: catalyst design and reaction mechanism. Environmental Science & Technology, 2023, 57(26): 9495–9514
https://doi.org/10.1021/acs.est.2c09861
8 Q Cheng , Y Li , Z Wang , X Wang , G Zhang . Boosting full-spectrum light driven surface lattice oxygen activation of ZnMn2O4 by facet engineering for highly efficient photothermal mineralization of toluene. Applied Catalysis B: Environmental, 2023, 324: 122274
https://doi.org/10.1016/j.apcatb.2022.122274
9 Q Cheng , Z Wang , X Wang , J Li , Y Li , G Zhang . A novel Cu1.5Mn1.5O4 photothermal catalyst with boosted surface lattice oxygen activation for efficiently photothermal mineralization of toluene. Nano Research, 2023, 16(2): 2133–2141
https://doi.org/10.1007/s12274-022-4946-6
10 Y Zhao , M Song , Q Cao , P Sun , Y Chen , F Meng . The superoxide radicals’ production via persulfate activated with CuFe2O4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil. Journal of Hazardous Materials, 2020, 400: 122887
https://doi.org/10.1016/j.jhazmat.2020.122887
11 S Xu , L Wen , C Yu , S Li , J Tang . Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol a degradation: the coexisting of free-radical and non-radical pathways. Chemical Engineering Journal, 2022, 442: 136250
https://doi.org/10.1016/j.cej.2022.136250
12 J M Gatica , J Castiglioni , C de los Santos , M P Yeste , G Cifredo , M Torres , H Vidal . Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs. Catalysis Today, 2017, 296: 84–94
https://doi.org/10.1016/j.cattod.2017.04.025
13 F Agueniou , H Vidal , M P Yeste , J C Hernández-Garrido , M A Cauqui , J M Rodríguez-Izquierdo , J J Calvino , J M Gatica . Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane. Catalysis Today, 2022, 383: 226–235
https://doi.org/10.1016/j.cattod.2020.07.030
14 C De los Santos , H Vidal , J M Gatica , M P Yeste , G Cifredo , J Castiglioni . Optimized preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for acetone total combustion. Microporous and Mesoporous Materials, 2021, 310: 110651
https://doi.org/10.1016/j.micromeso.2020.110651
15 J He , S Y Chen , W Tang , Y Dang , P Kerns , R Miao , B Dutta , P X Gao , S L Suib . Microwave-assisted integration of transition metal oxide nanocoatings on manganese oxide nanoarray monoliths for low temperature CO oxidation. Applied Catalysis B: Environmental, 2019, 255: 117766
https://doi.org/10.1016/j.apcatb.2019.117766
16 M Ma , R Yang , Z Jiang , C Chen , Q Liu , R Albilali , C He . Fabricating M/Al2O3/cordierite (M = Cr, Mn, Fe, Co, Ni and Cu) monolithic catalysts for ethyl acetate efficient oxidation: unveiling the role of water vapor and reaction mechanism. Fuel, 2021, 303: 121244
https://doi.org/10.1016/j.fuel.2021.121244
17 X Li , Z Wang , H Shi , D Dai , S Zuo , C Yao , C Ni . Full spectrum driven SCR removal of NO over hierarchical CeVO4/attapulgite nanocomposite with high resistance to SO2 and H2O. Journal of Hazardous Materials, 2020, 386: 121977
https://doi.org/10.1016/j.jhazmat.2019.121977
18 J Huang , X Ye , W Li , A Shi , X Chu , Z Cao , C Yao , X Li . Infrared-to-visible upconversion enhanced photothermal catalytic degradation of toluene over Yb3+, Er3+: CeO2/attapulgite nanocomposite: effect of rare earth doping. Journal of Industrial and Engineering Chemistry, 2022, 116: 504–514
https://doi.org/10.1016/j.jiec.2022.09.040
19 J Huang , Y Zhang , M Wu , S Zuo , C Yao , C Ni , X Li . Photothermal catalytic oxidation of toluene by perovskite oxide/biochar nanocomposite: effect of biomass incorporation. Separation and Purification Technology, 2024, 330: 125316
https://doi.org/10.1016/j.seppur.2023.125316
20 P Liu , Y Liao , J Li , L Chen , M Fu , P Wu , R Zhu , X Liang , T Wu , D Ye . Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene. Journal of Colloid and Interface Science, 2021, 594: 713–726
https://doi.org/10.1016/j.jcis.2021.03.093
21 L He , L Lv , S C Pillai , H Wang , J Xue , Y Ma , Y Liu , Y Chen , L Wu , Z Zhang . et al.. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Science of the Total Environment, 2021, 783: 146974
https://doi.org/10.1016/j.scitotenv.2021.146974
22 K A Alzahrani , A A Ismail , N Alahmadi . Heterojunction of CuMn2O4/CeO2 nanocomposites for promoted photocatalytic H2 evolution under visible light. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104692
https://doi.org/10.1016/j.jtice.2023.104692
23 J Cao , J He , J Ye , K Ge , Y Zhang , Y Yang . Urchin-like Bi2S3/Ag nanostructures for photocatalytic reduction of Cr(VI). ACS Applied Nano Materials, 2021, 4(2): 1260–1269
https://doi.org/10.1021/acsanm.0c02858
24 F Yang , Y Lu , M Liu , S Yang , W Tu , W Zhang , C Zhu , Z Guo , A Yuan . Carbon-framework-encapsulated CoMn2O4 spinel derived from electrospun nanofiber coupling via the photothermal approach reinforces PMS activation to eliminate 2,4-dichlorophenol. Materials Chemistry Frontiers, 2020, 6(19): 2810–2825
https://doi.org/10.1039/D2QM00490A
25 L Yang , Z Wei , Z Guo , M Chen , J Yan , L Qian , L Han , J Li , M Gu . Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline. Journal of Hazardous Materials, 2023, 445: 130588
https://doi.org/10.1016/j.jhazmat.2022.130588
26 W Liu , X Li , X Chu , S Zuo , B Gao , C Yao , Z Li , Y Chen . Boosting photocatalytic reduction of nitrate to ammonia enabled by perovskite/biochar nanocomposites with oxygen defects and O-containing functional groups. Chemosphere, 2022, 294: 133763
https://doi.org/10.1016/j.chemosphere.2022.133763
27 Y Zhang , Y Li , Z Zeng , J Hu , Z Huang . Promotion mechanism of CuMn2O4 modification with NaOH on toluene oxidation: boosting the ring-opening of benzoate. Fuel, 2022, 314: 122747
https://doi.org/10.1016/j.fuel.2021.122747
28 Y Yang , W Si , Y Peng , Y Wang , H Liu , Z Su , J Li . Defect engineering on CuMn2O4 spinel surface: a new path to high-performance oxidation catalysts. Environmental Science & Technology, 2022, 56(22): 16249–16258
https://doi.org/10.1021/acs.est.2c04858
29 F Raziq , K Khan , S Ali , S Ali , H Xu , I Ali , A Zada , P Muhammad Ismail , A Ali , H Khan . et al.. Accelerating CO2 reduction on novel double perovskite oxide with sulfur, carbon incorporation: synergistic electronic and chemical engineering. Chemical Engineering Journal, 2022, 446: 137161
https://doi.org/10.1016/j.cej.2022.137161
30 C Hu , T J Lin , Y C Huang , Y Y Chen , K H Wang , K Y Andrew Lin . Photoluminescence quenching of thermally treated waste-derived carbon dots for selective metal ion sensing. Environmental Research, 2021, 197: 111008
https://doi.org/10.1016/j.envres.2021.111008
31 J Kong , Z Xiang , G Li , T An . Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Applied Catalysis B: Environmental, 2020, 269: 118755
https://doi.org/10.1016/j.apcatb.2020.118755
32 Y Zhang , Y Li , Z Zeng , J Hu , Y Hou , Z Huang . Synergically engineering Cu+ and oxygen vacancies in CuMn2O4 catalysts for enhanced toluene oxidation performance. Molecular Catalysis, 2022, 517: 112043
https://doi.org/10.1016/j.mcat.2021.112043
33 G Li , M Zhang , J Chen , Q Li , H Jia . Combined effects of Pt nanoparticles and oxygen vacancies to promote photothermal catalytic degradation of toluene. Journal of Hazardous Materials, 2023, 449: 131041
https://doi.org/10.1016/j.jhazmat.2023.131041
34 Y Ma , L Wang , J Ma , H Wang , C Zhang , H Deng , H He . Investigation into the enhanced catalytic oxidation of o-xylene over MOF-derived Co3O4 with different shapes: the role of surface twofold-coordinate lattice oxygen (O2f). ACS Catalysis, 2021, 11(11): 6614–6625
https://doi.org/10.1021/acscatal.1c01116
35 M KimB SeoJ BooH JungN K ParkH J RyuJ I BaekM KangS B KangD Kang. Enhancement in oxygen transfer rate of CuMn2O4 oxygen carrier via selective dopants: role of dopant effects on O migration for chemical looping combustion. Catalysis Today, 2023, 411–412: 113881
36 E A Elimian , M Zhang , Q Li , J Chen , Y Sun , H Jia , J He . Light-driven photothermal catalytic oxidation of toluene over CuOx-WOx/mTiO2−x-USY: Revealing CuOx-WOx synergy. Applied Catalysis B: Environmental, 2023, 331: 122702
https://doi.org/10.1016/j.apcatb.2023.122702
[1] Dang Duc Viet, Doan Thi Thao, Khuong Duy Anh, Toshiki Tsubota. Autohydrolysis treatment of bamboo and potassium oxalate (K2C2O4) activation of bamboo product for CO2 capture utilization[J]. Front. Chem. Sci. Eng., 2024, 18(4): 41-.
[2] Huabin Wang, Dingxiang Chen, Yi Wen, Ting Cui, Ying Liu, Yong Zhang, Rui Xu. Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization: from batch solution to pilot-scale investigation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 880-892.
[3] Shan Wang, Ping Xiao, Jie Yang, Sónia A.C. Carabineiro, Marek Wiśniewski, Junjiang Zhu, Xinying Liu. Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1649-1676.
[4] Rusen Zhou, Xiaoxiang Wang, Renwu Zhou, Janith Weerasinghe, Tianqi Zhang, Yanbin Xin, Hao Wang, Patrick Cullen, Hongxia Wang, Kostya (Ken) Ostrikov. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications[J]. Front. Chem. Sci. Eng., 2022, 16(4): 475-483.
[5] Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation[J]. Front. Chem. Sci. Eng., 2018, 12(2): 296-305.
[6] Zhidan Fu, Lisha Liu, Yong Song, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd loading[J]. Front. Chem. Sci. Eng., 2017, 11(2): 185-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed