Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 124    https://doi.org/10.1007/s11705-024-2475-4
Chemical activation of phosphogypsum exhibits enhanced adsorption of malachite green from aqueous solution due to porosity refinement
Anurag Panda1, Anuradha Upadhyaya1, Ramesh Kumar2, Argha Acooli1, Shirsendu Banerjee1,3, Amrita Mishra3, Moonis Ali Khan4, Somnath Chowdhury5, Byong-Hun Jeon2(), Sankha Chakrabortty1,3(), Suraj K. Tripathy1,3()
1. School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
2. Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
3. School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
4. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
5. Department of Chemical Engineering, National Institute of Technology, Durgapur 713209, West Bengal
 Download: PDF(2079 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Owing to its uncomplicated synthetic methodology and exorbitant market demand, malachite green is widely used in numerous industries, particularly as a fungicide in aquaculture. Considering its intrinsic toxicity and potential long-term health impacts, deployable and cost-effective strategies must be developed for eliminating water-soluble malachite green. In this study, chemically activated phosphogypsum, a byproduct of fertilizer production, was used to remove malachite green from an aqueous system. Due to its low cost and abundance, the use of phosphogypsum as a sorbent material may significantly reduce the cost of adsorption-based processes. Moreover, its structural durability allows efficient recycling without significant deformation during reactivation. However, untreated phosphogypsum exhibits minimal efficiency in adsorbing synthetic dyes due to its unfavorable surface chemistry. Our investigation revealed that Zn activation induced a noticeable increase in pore volume from 0.03 to 0.06 cm3·g–1. A 60 mg·L–1 sorbent dose, pH 7, 150 r·min–1, and operational temperature of 30 °C produced 99% quantitative sorption efficiency. Response surface methodology and artificial neural network were used to optimize process parameters by validating experimental values. No detectable toxicity was observed in Escherichia coli when exposed to the treated water.

Keywords malachite green      operating conditions optimization      phosphogypsum      sorption      water treatment     
Corresponding Author(s): Byong-Hun Jeon,Sankha Chakrabortty,Suraj K. Tripathy   
About author:

Chunqi Yang contributed equally to this work.

Just Accepted Date: 21 May 2024   Issue Date: 31 July 2024
 Cite this article:   
Anurag Panda,Anuradha Upadhyaya,Ramesh Kumar, et al. Chemical activation of phosphogypsum exhibits enhanced adsorption of malachite green from aqueous solution due to porosity refinement[J]. Front. Chem. Sci. Eng., 2024, 18(11): 124.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2475-4
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/124
Factor Name Units Minimum Maximum Coded low (–1) Coded high (+1) Mean Std. Dev.
A Adsorbent dose g·L–1 0.40 0.80 0.50 0.70 0.60 0.09
B MG concentration mg·L–1 30.00 70.00 40.00 60.00 50.00 9.04
C Stirring time r·min–1 50.00 250.00 100.00 200.00 150.00 45.18
D Temperature °C 15.00 35.00 20.00 30.00 25.00 4.52
E Time min 15.00 75.00 30.00 60.00 45.00 13.55
Tab.1  Coded data of the selected operating conditions used for the design of experiments
Std Run Factor A Factor B Factor C Factor D Factor E Response
Adsorbent dose/(g·L–1) MG concentration/(mg·L–1) Stirring time/(r·min–1) Temperature/°C Time/min Observed adsorption efficiency/% RSM predicted adsorption efficiency/% ANN predicted adsorption efficiency/%
35 1 0.6 30 150 25 45 90 90.4 88.40
48 2 0.6 50 150 25 45 100 99.6 99.88
5 3 0.5 40 200 20 30 70 70.4 69.99
18 4 0.7 40 100 20 60 85 84.1 84.99
12 5 0.7 60 100 30 30 72 70.4 72.00
20 6 0.7 60 100 20 60 78 77.1 70.42
38 7 0.6 50 250 25 45 84 86.1 83.99
1 8 0.5 40 100 20 30 80 78.5 79.99
33 9 0.4 50 150 25 45 60 60.5 60.00
32 10 0.7 60 200 30 60 84 83.2 84.00
42 11 0.6 50 150 25 75 86 84.8 81.90
28 12 0.7 60 100 30 60 86 84.2 91.85
2 13 0.7 40 100 20 30 86 84.5 84.35
47 14 0.6 50 150 25 45 99.8 99.2 99.88
11 15 0.5 60 100 30 30 72 72.6 75.86
10 16 0.7 40 100 30 30 78 77.4 78.00
16 17 0.7 60 200 30 30 76 75.1 76.00
37 18 0.6 50 50 25 45 89 88 89.00
34 19 0.8 50 150 25 45 70 68.4 70.00
30 20 0.7 40 200 30 60 74 76.1 74.00
29 21 0.5 40 200 30 60 66 67.4 66.00
43 22 0.6 50 150 25 45 100 99.4 99.88
46 23 0.6 50 150 25 45 100 99.5 99.88
14 24 0.7 40 200 30 30 75 75.2 74.99
36 25 0.6 70 150 25 45 85 83.7 84.99
19 26 0.5 60 100 20 60 55 55.6 55.00
31 27 0.5 60 200 30 60 76 77.4 76.00
6 28 0.7 40 200 20 30 70 68.2 70.00
25 29 0.5 40 100 30 60 68 68.4 61.63
22 30 0.7 40 200 20 60 55 54.8 55.00
21 31 0.5 40 200 20 60 42 43.5 41.14
27 32 0.5 60 100 30 60 70 68.4 69.99
41 33 0.6 50 150 25 15 88 87.7 87.99
26 34 0.7 40 100 30 60 88 86.8 87.99
15 35 0.5 60 200 30 30 88 88.5 87.99
3 36 0.5 60 100 20 30 60 63.1 60.00
24 37 0.7 60 200 20 60 64 62.8 57.49
4 38 0.7 60 100 20 30 62 62.7 62.00
23 39 0.5 60 200 20 60 50 50.8 50.00
50 40 0.6 50 150 25 45 100 99.7 99.88
40 41 0.6 50 150 35 45 80 80.7 80.00
7 42 0.5 60 200 20 30 60 62.7 60.00
17 43 0.5 40 100 20 60 50 51.4 50.00
39 44 0.6 50 150 15 45 42 42.7 41.99
8 45 0.7 60 200 20 30 62 60.7 61.99
44 46 0.6 50 150 25 45 99.5 99.4 99.88
45 47 0.6 50 150 25 45 99.9 99.8 99.88
49 48 0.6 50 150 25 45 100 99.8 99.88
9 49 0.5 40 100 30 30 82 83.4 82.00
13 50 0.5 40 200 30 30 86 85.7 86.00
Tab.2  CCD-based data matrix corresponding to different operating conditions
Fig.1  (a) XRD pattern and (b) FTIR spectra of PG and PG-Zn.
Fig.2  (a–e) XPS of zinc-treated PG; (a) XPS plot for zinc-treated PG; (b) plot for Ca; (c) plot for Zn; (d) plot for Si; (e) plot for C.
Fig.3  Morphological images for PG and zinc-treated PG. (a, c) Field emission scanning electron microscopic image of PG; (b, d) field emission scanning electron microscopic image of zinc-treated PG (PG-Zn); (e) energy-dispersive X-ray analysis for PG; (f) energy-dispersive X-ray analysis for PG-Zn; (g) SAED pattern for PG-Zn; (h) d-spacing derived from HRTEM for PG-Zn; (i) HRTEM image of PG-Zn.
Fig.4  (a) N2 adsorption and desorption curve of PG; (b) pore size distribution of PG; (c) N2 adsorption and desorption curve of PG-Zn; (d) pore size distribution of PG-Zn.
Fig.5  (a) Zeta potential of PG; (b) PZC of PG; (c) zeta potential of PG-Zn; (d) PZC of PG-Zn.
Fig.6  Effect of different operational conditions on the adsorption efficiency. (a) Stirring speed vs. adsorption efficiency (other conditions: pH = 7, initial MG concentration = 50 ppm, sorbent dose = 0.6 g·L–1, temperature = 30 °C); (b) sorbent dose vs. adsorption efficiency (other conditions: pH = 7, initial MG concentration = 50 ppm, stirring speed = 150 r·min–1, temperature = 30 °C); (c) dye concentration vs. adsorption efficiency (other conditions: pH = 7, stirring speed = 150 r·min–1, sorbent dose = 0.6 g·L–1, temperature = 30 °C); (d) solution pH vs. adsorption efficiency (other conditions: initial MG concentration = 50 ppm, stirring speed = 150 r·min–1, sorbent dose = 0.6 g·L–1, temperature = 30 °C); (e) temperature vs. adsorption efficiency (other conditions: pH = 7, stirring speed = 150 r·min–1, sorbent dose = 0.6 g·L–1, initial MG concentration = 50 ppm).
Fig.7  Mutual interactions of the different operational parameters (extracted from RSM-CCD) on MG dye adsorption efficiency over PG-Zn; mutual interactions of (a) adsorbent dose and temperature; (b) adsorbent dose and stirring speed; (c) MG concentration and adsorbent dose; (d) time and stirring speed; (e) time and temperature; (f) time and adsorbent dose; (g) MG concentration and temperature; (h) MG concentration and temperature; (i) time and concentration; (j) temperature and stirring speed.
R2AEPMSERMSEMAE
RSM0.9951.4191.4391.2000.998
ANN0.9841.0604.2492.0610.789
Tab.3  Summary of statistical results of RSM and ANNa)
Fig.8  (a) Neural network of the operating parameters and (b) the regression curve with a final R2 value of > 0.99.
Adsorbent dose/(g·L–1) MG concentration/(mg·L–1) Stirring speed/(r·min–1) Temperature/°C Time/min Adsorption efficiency/%
ANN 0.71 54.39 86.81 27.16 74.24 100
RSM 0.61 45.37 136.33 26.16 39.75 100
Tab.4  Optimized operational conditions to achieve the maximum removal efficiency
Adsorbent Isotherm Equilibrium parameters
Zinc treated PG Langmuir qm (mg·g–1), 166.66 RL, 0.0375 R2, 0.91
Freundlich 1/n, 0.4725 Kf, 55.69 R2, 0.93
Temkin Bt (kJ·mol–1), 0.0387 Kt, 4.0728 R2, 0.96
Dubinin-Radsukevich Qm (mg·g–1), 117.21 K, 2.67 × 10–7 R2, 0.92
Tab.5  Equilibrium parameters of different isotherm models used in this study
Fig.9  Adsorption isotherm models. (a) Langmuir; (b) Freundlich; (c) Temkin; (d) Dubinin-Radushkevich.
Rate constant qe/(mg·g–1) R2
Experimental 81.77
Pseudo first-order model K1 = –0.00069 7.414 0.9735
Pseudo second-order model K2 = 95680.47 96.1538 0.9722
Intra-particle diffusion model Kp = 0.5196 0.9272
Thermodynamic parameters ΔG0/(kJ·mol–1)–12.90565106–12.69523471–11.10835584–10.10820467 ΔH0/(kJ·mol–1), 22.204 ΔS0/(kJ·mol–1), –55.2714
Tab.6  Kinetic and thermodynamic results of the present study
Fig.10  Kinetic graphs. (a) Pseudo first-order model; (b) pseudo second-order model; (c) intra-particle diffusion model; (d) thermodynamic graph.
1 S Bilalova , J Newig , L C Tremblay-Lévesque , J Roux , C Herron , S Crane . Pathways to water sustainability? A global study assessing the benefits of integrated water resources management. Journal of Environmental Management, 2023, 343: 118179
https://doi.org/10.1016/j.jenvman.2023.118179
2 R Kumar , A Basu , B Bishayee , R P Chatterjee , M Behera , W L Ang , P Pal , M Shah , S K Tripathy , S Ambika . et al.. Management of tannery waste effluents towards the reclamation of clean water using an integrated membrane system: a state-of-the-art review. Environmental Research, 2023, 229: 115881
https://doi.org/10.1016/j.envres.2023.115881
3 R Kumar , C Liu , G S Ha , K H Kim , S Chakrabortty , S K Tripathy , Y K Park , M A Khan , K K Yadav , M M S Cabral-Pinto . et al.. A novel membrane-integrated sustainable technology for downstream recovery of molybdenum from industrial wastewater. Resources, Conservation and Recycling, 2023, 196: 107035
https://doi.org/10.1016/j.resconrec.2023.107035
4 R Kumar , E Awino , D W Njeri , A Basu , S Chattaraj , J Nayak , S Roy , G A Khan , B H Jeon , A K Ghosh . et al.. Advancing pharmaceutical wastewater treatment: a comprehensive review on application of catalytic membrane reactor-based hybrid approaches. Journal of Water Process Engineering, 2024, 58: 104838
https://doi.org/10.1016/j.jwpe.2024.104838
5 R Kumar , S Chakrabortty , P Chakrabortty , J Nayak , C Liu , M Ali Khan , G S Ha , K Ho Kim , M Son , H S Roh . et al.. Sustainable recovery of high-valued resources from spent lithium-ion batteries: a review of the membrane-integrated hybrid approach. Chemical Engineering Journal, 2023, 470: 144169
https://doi.org/10.1016/j.cej.2023.144169
6 A M S Jorge , K K Athira , M B Alves , R L Gardas , J F B Pereira . Textile dyes effluents: a current scenario and the use of aqueous biphasic systems for the recovery of dyes. Journal of Water Process Engineering, 2023, 55: 104125
https://doi.org/10.1016/j.jwpe.2023.104125
7 A Abel. 24-The history of dyes and pigments: from natural dyes to high performance pigments. In: Best J, editor. Colour Design (Second Edition). United Kingdom: Woodhead Publishing, 2012, 557–587
8 M C Kannaujiya , R Kumar , T Mandal , M K Mondal . Experimental investigations of hazardous leather industry dye (Acid Yellow 2GL) removal from simulated wastewater using a promising integrated approach. Process Safety and Environmental Protection, 2021, 155: 444–454
https://doi.org/10.1016/j.psep.2021.09.040
9 D J Alderman . Malachite green: a review. Journal of Fish Diseases, 1985, 8(3): 289–298
https://doi.org/10.1111/j.1365-2761.1985.tb00945.x
10 M S Gharavi-nakhjavani , A Niazi , H Hosseini , M Aminzare , R Dizaji , B Tajdar-oranj , A Mirza Alizadeh . Malachite green and leucomalachite green in fish: a global systematic review and meta-analysis. Environmental Science and Pollution Research International, 2023, 30(17): 48911–48927
https://doi.org/10.1007/s11356-023-26372-z
11 J Sharma , S Sharma , V Soni . Toxicity of malachite green on plants and its phytoremediation: a review. Regional Studies in Marine Science, 2023, 62: 102911
https://doi.org/10.1016/j.rsma.2023.102911
12 T Li , D Tian , Z Zhu , W Jin , S Wu , H Li . The gut microbiota: a new perspective on the toxicity of malachite green (MG). Applied Microbiology and Biotechnology, 2019, 103(23–24): 9723–9737
https://doi.org/10.1007/s00253-019-10214-5
13 R Gopinathan , J Kanhere , J Banerjee . Effect of malachite green toxicity on non target soil organisms. Chemosphere, 2015, 120: 637–644
https://doi.org/10.1016/j.chemosphere.2014.09.043
14 A Stammati , C Nebbia , I D Angelis , A G Albo , M Carletti , C Rebecchi , F Zampaglioni , M Dacasto . Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro, 2005, 19(7): 853–858
https://doi.org/10.1016/j.tiv.2005.06.021
15 X Zhou , J Zhang , Z Pan , D Li . Review of methods for the detection and determination of malachite green and leuco-malachite green in aquaculture. Critical Reviews in Analytical Chemistry, 2019, 49(1): 1–20
https://doi.org/10.1080/10408347.2018.1456314
16 D A Yaseen , M Scholz . Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 2019, 16(2): 1193–1226
https://doi.org/10.1007/s13762-018-2130-z
17 P O Oladoye , T O Ajiboye , W C Wanyonyi , E O Omotola , M E Oladipo . Insights into remediation technology for malachite green wastewater treatment. Water Science and Engineering, 2023, 16(3): 261–270
https://doi.org/10.1016/j.wse.2023.03.002
18 C T Umeh , A B Akinyele , N H Okoye , S S Emmanuel , K O Iwuozor , I P Oyekunle , J O Ocheje , J O Ighalo . Recent approach in the application of nanoadsorbents for malachite green (MG) dye uptake from contaminated water: a critical review. Environmental Nanotechnology, Monitoring & Management, 2023, 20: 100891
https://doi.org/10.1016/j.enmm.2023.100891
19 F Joseph , Y K Agrawal , D Rawtani . Behavior of malachite green with different adsorption matrices. Frontiers in Life Science, 2013, 7(3–4): 99–111
https://doi.org/10.1080/21553769.2013.803210
20 A Naboulsi , M E Himri , E K Gharibi , M E Haddad . Study of adsorption mechanism of malachite green (MG) and basic yellow 28 (BY28) onto smectite rich natural clays (Ghassoul) using DFT/B3LYP and DOE/FFD. Surfaces and Interfaces, 2022, 33: 102227
https://doi.org/10.1016/j.surfin.2022.102227
21 I Chouaybi , E M Moujahid , M Bettach . From waste to clean water: effective removal of Acid Red 97 dye using green synthesized hydrocalumite from phosphogypsum and aluminum foils. Inorganic Chemistry Communications, 2023, 158: 111653
https://doi.org/10.1016/j.inoche.2023.111653
22 K Singh , A Kumar , A K Singh , A Agarwal . Fly ash and TiO2 modified fly ash as adsorbing materials for effective removal of methylene blue and malachite green from aqueous solutions. Journal of the Indian Chemical Society, 2023, 100(3): 100942
https://doi.org/10.1016/j.jics.2023.100942
23 V M Muinde , J M Onyari , B Wamalwa , J N Wabomba . Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan-zinc oxide composite material. Environmental Chemistry and Ecotoxicology, 2020, 2: 115–125
https://doi.org/10.1016/j.enceco.2020.07.005
24 Y Bulut , H Aydın . A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 2006, 194(1–3): 259–267
https://doi.org/10.1016/j.desal.2005.10.032
25 D Zhang , B Wang , X Gong , Z Yang , Y Liu . Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation. Chemical Engineering Journal, 2019, 359: 1195–1204
https://doi.org/10.1016/j.cej.2018.11.058
26 B Basak , S Patil , R Kumar , G S Ha , Y K Park , M Ali Khan , K Kumar Yadav , A M Fallatah , B H Jeon . Integrated hydrothermal and deep eutectic solvent-mediated fractionation of lignocellulosic biocomponents for enhanced accessibility and efficient conversion in anaerobic digestion. Bioresource Technology, 2022, 351: 127034
https://doi.org/10.1016/j.biortech.2022.127034
27 P Dey , S Chakrabortty , D Haldar , A Sowmya , V Rangarajan , H A Ruiz . Kinetic model supported improved and optimized submerged production strategy of cellulase enzyme from newspaper waste biomass. Bioprocess and Biosystems Engineering, 2022, 45(8): 1281–1295
https://doi.org/10.1007/s00449-022-02741-9
28 S Chowdhury , S K Lahiri , A Hens , S Katiyar . Performance enhancement of commercial ethylene oxide reactor by artificial intelligence approach. International Journal of Chemical Reactor Engineering, 2022, 20(2): 237–250
https://doi.org/10.1515/ijcre-2020-0230
29 H M Abumelha , S O Alzahrani , S H Alrefaee , A M Al-bonayan , F Alkhatib , F A Saad , N M El-Metwaly . Evaluation of tetracycline removal by magnetic metal organic framework from aqueous solutions: adsorption isotherm, kinetics, thermodynamics, and Box-Behnken design optimization. Journal of Saudi Chemical Society, 2023, 27(5): 101706
https://doi.org/10.1016/j.jscs.2023.101706
30 T S Singh , K K Pant . Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technology, 2004, 36(2): 139–147
https://doi.org/10.1016/S1383-5866(03)00209-0
31 M Saeed , M Munir , M Nafees , S S A Shah , H Ullah , A Waseem . Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 2020, 291: 109697
https://doi.org/10.1016/j.micromeso.2019.109697
32 S Iwasaki , N Koga . Thermal dehydration of calcium sulfate dihydrate: physico-geometrical kinetic modeling and the influence of self-generated water vapor. Physical Chemistry Chemical Physics, 2020, 22(39): 22436–22450
https://doi.org/10.1039/D0CP04195E
33 H F Dantas , R A S Mendes , R D Pinho , L E B Soledade , C A Paskocimas , B B Lira , M O E Schwartz , A G Souza , I M G Santos . Characterizationof gypsum using TMDSC. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 691–695
https://doi.org/10.1007/s10973-006-7733-9
34 I Hammas-Nasri , K Horchani-Naifer , M Férid , D Barca . Rare earths concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing, 2016, 149: 78–83
https://doi.org/10.1016/j.minpro.2016.02.011
35 X Li , Q Zhang . Hydration mechanism and hardening property of α-hemihydrate phosphogypsum. Minerals, 2019, 9(12): 733
https://doi.org/10.3390/min9120733
36 E Yuan , W Han , G Zhang , K Zhao , Z Mo , G Lu , Z Tang . Structural and textural characteristics of Zn-containing ZSM-5 zeolites and application for the selective catalytic reduction of NOx with NH3 at high temperatures. Catalysis Surveys from Asia, 2016, 20(1): 41–52
https://doi.org/10.1007/s10563-015-9205-3
37 K Grabas , A Pawełczyk , W Stręk , E Szełęg , S Stręk . Study on the properties of waste apatite phosphogypsum as a raw material of prospective applications. Waste and Biomass Valorization, 2019, 10(10): 3143–3155
https://doi.org/10.1007/s12649-018-0316-8
38 S Yorgun , N Vural , H Demiral . Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 2009, 122(1-3): 189–194
https://doi.org/10.1016/j.micromeso.2009.02.032
39 M Bellotto , G Artioli , M C Dalconi , R Corso . On the preparation of concentrated gypsum slurry to reuse sulfate-process TiO2 byproduct stream. Journal of Cleaner Production, 2018, 195: 1468–1475
https://doi.org/10.1016/j.jclepro.2017.12.089
40 E M van der MerweC A StrydomJ H Potgieter. Thermogravimetric analysis of the reaction between carbon and CaSO4·2H2O, gypsum and phosphogypsum in an inert atmosphere. Thermochimica Acta, 1999, 340–341: 431–437
41 L Das , S Sengupta , P Das , A Bhowal , C Bhattacharjee . Experimental and numerical modeling on dye adsorption using pyrolyzed mesoporous biochar in batch and fixed-bed column reactor: isotherm, thermodynamics, mass transfer, kinetic analysis. Surfaces and Interfaces, 2021, 23: 100985
https://doi.org/10.1016/j.surfin.2021.100985
42 M A M Salleh , D K Mahmoud , W A W A Karim , A Idris . Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 2011, 280(1–3): 1–13
https://doi.org/10.1016/j.desal.2011.07.019
43 L Zhou , J Jin , Z Liu , X Liang , C Shang . Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials, 2011, 185(2–3): 1045–1052
https://doi.org/10.1016/j.jhazmat.2010.10.012
44 C F Mok , Y C Ching , N A A Osman , F Muhamad , N D Hai , J H Choo , C R Hassan . Adsorbents for removal of cationic dye: nanocellulose reinforced biopolymer composites. Journal of Polymer Research, 2020, 27(12): 373
https://doi.org/10.1007/s10965-020-02347-3
45 T Santhi , S Manonmani , T Smitha . Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. Journal of Hazardous Materials, 2010, 179(1–3): 178–186
https://doi.org/10.1016/j.jhazmat.2010.02.076
46 S Sarkar , N Tiwari , M Behera , S Chakrabortty , K Jhingran , K Sanjay , S Banerjee , S K Tripathy . Facile synthesis, characterization and application of magnetic Fe3O4-coir pith composites for the removal of methyl violet from aqueous solution: kinetics, isotherm, thermodynamics and parametric optimization. Journal of the Indian Chemical Society, 2022, 99(5): 100447
https://doi.org/10.1016/j.jics.2022.100447
47 M Rafatullah , O Sulaiman , R Hashim , A Ahmad . Removal of cadmium(II) from aqueous solutions by adsorption using meranti wood. Wood Science and Technology, 2012, 46(1–3): 221–241
https://doi.org/10.1007/s00226-010-0374-y
48 M Musah , Y Azeh , J T Mathew , M T Umar , Z Abdulhamid , A I Muhammad . Adsorption kinetics and isotherm models: a review. Caliphate Journal of Science and Technology, 2022, 4(1): 20–26
https://doi.org/10.4314/cajost.v4i1.3
49 M Caianelo , C Rodrigues-Silva , M G Maniero , V Diniz , M Spina , J R Guimarães . Evaluation of residual antimicrobial activity and acute toxicity during the degradation of gatifloxacin by ozonation. Water Science and Technology, 2021, 84(1): 225–236
https://doi.org/10.2166/wst.2021.208
50 S Chakrabortty , M Pal , M Roy , P Pal . Water treatment in a new flux-enhancing, continuous forward osmosis design: transport modelling and economic evaluation towards scale up. Desalination, 2015, 365: 329–342
https://doi.org/10.1016/j.desal.2015.03.020
[1] FCE-23127-OF-PA_suppl_1 Download
[1] Peng-Hui Li, Hui Zhou, Wen-Juan Wu. Multifunctional carbon materials from rugose rose for energy storage and water purification[J]. Front. Chem. Sci. Eng., 2024, 18(9): 97-.
[2] Nurul A. Mazlan, Allana Lewis, Fraz Saeed Butt, Rajakumari Krishnamoorthi, Siyu Chen, Yi Huang. Bimetallic reduced graphene oxide/zeolitic imidazolate framework hybrid aerogels for efficient heavy metals removal[J]. Front. Chem. Sci. Eng., 2024, 18(8): 89-.
[3] Tauseef Munawar, Ambreen Bashir, Khalid Mujasam Batoo, Saman Fatima, Faisal Mukhtar, Sajjad Hussain, Sumaira Manzoor, Muhammad Naeem Ashiq, Shoukat Alim Khan, Muammer Koc, Faisal Iqbal. Construction of robust and durable Cu2Se–V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2024, 18(6): 65-.
[4] Yu Meng, Yitong Wang, Guozhu Li, Guozhu Liu, Li Wang. Insight into the adsorption behavior and mechanism of trace impurities from H2O2 solution on functionalized zirconia by tuning the structure of amino groups[J]. Front. Chem. Sci. Eng., 2024, 18(5): 56-.
[5] Li Zhao, Xinru Liu, Zihao Ye, Bin Hu, Haoyu Wang, Ji Liu, Bing Zhang, Qiang Lu. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study[J]. Front. Chem. Sci. Eng., 2024, 18(3): 25-.
[6] Guopei Zhang, Xiaoyang Zhang, Xiangwen Xing, Xiangru Kong, Lin Cui, Dong Yong. Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent: experimental and theoretical insights[J]. Front. Chem. Sci. Eng., 2024, 18(3): 32-.
[7] Feng Zhang, Shuainan Xu, Xiumei Geng, Meixia Shan, Yatao Zhang. Recyclable hydrolyzed polymers of intrinsic microporosity-1/Fe3O4 magnetic composites as adsorbents for selective cationic dye adsorption[J]. Front. Chem. Sci. Eng., 2024, 18(2): 21-.
[8] Jiangyan Lu, Zhu Xiong, Yuhang Cheng, Qingwu Long, Kaige Dong, Hongguo Zhang, Dinggui Luo, Li Yu, Wei Zhang, Gaosheng Zhang. The energy-free purification of trace thallium(I)-contaminated potable water using a high-selective filter paper with multi-layered Prussian blue decoration[J]. Front. Chem. Sci. Eng., 2024, 18(2): 13-.
[9] Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang. Advanced membrane separation based on two-dimensional porous nanosheets[J]. Front. Chem. Sci. Eng., 2024, 18(11): 128-.
[10] Jiali Bai, Jiamei Huang, Qiyun Yu, Muslum Demir, Eda Akgul, Bilge Nazli Altay, Xin Hu, Linlin Wang. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1122-1130.
[11] Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang. Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134[J]. Front. Chem. Sci. Eng., 2023, 17(7): 853-866.
[12] Qiaoyan Zhou, Huan Liu, Yipeng Wang, Kangxin Xiao, Guangyan Yang, Hong Yao. Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components[J]. Front. Chem. Sci. Eng., 2023, 17(7): 942-953.
[13] Huabin Wang, Dingxiang Chen, Yi Wen, Ting Cui, Ying Liu, Yong Zhang, Rui Xu. Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization: from batch solution to pilot-scale investigation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 880-892.
[14] Shan Jiang, Jianfeng Xi, Hongqi Dai, Huining Xiao, Weibing Wu. Easily-manufactured paper-based materials with high porosity for adsorption/separation applications in complex wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(7): 830-839.
[15] Shangyuan Zhao, Fangjia Wang, Rui Zhou, Peisen Liu, Qizhong Xiong, Weifeng Zhang, Chaochun Zhang, Gang Xu, Xinxin Ye, Hongjian Gao. Fabrication of recyclable Fe3+ chelated aminated polypropylene fiber for efficient clean-up of phosphate wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(7): 840-852.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed