Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 125    https://doi.org/10.1007/s11705-024-2476-3
Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41
Huaping Lin1, Likai Zhu1, Ye Liu1, Vasilevich Sergey Vladimirovich2, Bilainu Oboirien3, Yefeng Zhou1()
1. National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
2. Institute of Power Engineering, National Academy of Sciences of Belarus, Minsk 220072, Belarus
3. Department of Chemical Engineering, University of Johannesburg, Johannesburg 17011, South Africa
 Download: PDF(1355 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, the conversion of waste plastics into high-value products via catalytic pyrolysis enables the advancement of plastics’ open-loop recycling. However, enhancing selectivity remains a critical challenge. This study introduces a novel approach to catalytic pyrolysis, utilizing a combination of MCM-41 and modified gallium-based HZSM-5 catalysts, to achieve exceptional selectivity for aromatic liquid-phase products from linear low-density polyethylene. Firstly, to enhance the probability of dehydroaromatization optimization, the type and proportion of metal active sites within the HZSM-5 catalyst are fine-tuned, which would establish equilibrium with acid sites, resulting in a remarkable 15.72% increase in the selectivity of aromatic hydrocarbons. Secondly, to enhance the accessibility of volatiles to active sites, mesoporous MCM-41 with cracking capabilities is introduced. The doping ratio of MCM-41 is meticulously controlled to facilitate the diffusion of cracked volatiles to the active centers of modified gallium-based HZSM-5, enabling efficient reforming reactions. Experimental findings demonstrate that MCM-41 significantly enhances the dehydroaromatization activity of the modified gallium-based HZSM-5 catalyst. Under the influence of MCM-41:Zr2Ga3/HZSM-5 = 1:2 catalyst, the selectivity for aromatic hydrocarbons reaches an impressive 93.11%, with a notable 60.01% selectivity for benzene, toluene, ethylbenzene, and xylene. Lastly, this study proposes a plausible pathway for the generation of high-value aromatic hydrocarbons using the combined catalyst.

Keywords polyethylene pyrolysis      aromatic hydrocarbons      bimetal catalyst      HZSM-5      MCM-41     
Corresponding Author(s): Yefeng Zhou   
Just Accepted Date: 21 May 2024   Issue Date: 18 July 2024
 Cite this article:   
Huaping Lin,Likai Zhu,Ye Liu, et al. Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41[J]. Front. Chem. Sci. Eng., 2024, 18(11): 125.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2476-3
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/125
Fig.1  Schematic diagram of plastic catalytic pyrolysis experimental setup.
Type Instrument Producer and origin
GC GC9790II Fuli, China
GC-MS GC-MS2100plus Shimadzu, Japan
XRD D/MAX-2500 Rigaku, Japan
SEM ZEISS Sigma 300 Zeiss, Germany
N2 adsorption-desorption ASAP2460 Micromeritics, USA
NH3-TPD Auto Chem II 2920 Micromeritics, USA
Tab.1  Analysis and instruments
Fig.2  Rapid catalytic pyrolysis products of LLDPE with different metal species combinations. (a) Three-phase product yield distribution, (b) liquid-phase product distribution, and (c) gas-phase product distribution.
Fig.3  Rapid catalytic pyrolysis products of LLDPE at different metal loading levels, including (a) distribution of three-phase yields, (b) distribution of liquid-phase products, and (c) distribution of gas-phase products.
Fig.4  XRD spectra of the parent and metal-modified HZSM-5 zeolites.
Fig.5  SEM images of the parent (a) and Zr2Ga3/HZSM-5 (b), along with elemental mapping images (Si, O, Al, Zr, and Ga) for Zr2Ga3/HZSM-5 (c).
Samples SBET/(m2·g–1) Vtotal/(cm3·g–1) Vmicro/(cm3·g–1) Vmeso/(cm3·g–1) Dpore/nm
HZSM-5 335 0.229 0.161 0.068 5.5
Ga3/HZSM-5 324 0.222 0.156 0.072 6.0
Zr2Ga3/HZSM-5 306 0.213 0.145 0.068 5.1
Zn2Ga3/HZSM-5 306 0.205 0.144 0.061 4.8
Fe2Ga3/HZSM-5 281 0.206 0.134 0.072 6.1
Ce2Ga3/HZSM-5 302 0.204 0.144 0.060 4.7
Tab.2  Surface area, pore volume, and average pore size distribution of the parent and different metal species combination modified HZSM-5 catalysts
Fig.6  Characterization of parent and various metal-modified HZSM-5 catalysts. (a) N2 adsorption-desorption isotherms, and (b) pore size distribution.
Samples Weak acid sites/(mmol·g–1) Medium-strength and strong acid sites/(mmol·g–1) Total acid sites/(mmol·g–1) Strong acid sites/weak acid sites
HZSM-5 0.508 0.264 0.772 0.520
Ga3/ZSM-5 0.822 0.438 1.260 0.533
Zr2Ga3/ZSM-5 0.486 0.195 0.681 0.401
Tab.3  Quantity of acidic sites of parent and metal-modified HZSM-5
Fig.7  NH3-TPD spectra of the parent and metal-modified HZSM-5.
Fig.8  XPS spectra under different metal loadings. (a) Full spectrum, (b) Zr 3d spectrum, (c) and (d) Ga 3d spectra before and after Ga incorporation.
Catalysts Benzene/% Toluene/% Ethylbenzene/% Xylene/% BTEX/%
Zr2Ga3/HZSM-5 4.29 15.00 4.55 24.34 48.17
M:H = 1:3 4.76 16.83 4.02 23.31 48.92
M:H = 1:2 5.76 21.37 4.51 28.36 60.01
M:H = 1:1 4.72 15.82 3.88 21.49 45.91
Tab.4  Selectivity of BTEX in the liquid-phase products obtained from rapid catalytic pyrolysis of LLDPE at different ratios of MCM-41 to Zr2Ga3/HZSM-5
Fig.9  Rapid catalytic pyrolysis products of LLDPE at different ratios of MCM-41 to Zr2Ga3/HZSM-5. (a) Three-phase product yields, (b) liquid-phase product distribution, and (c) gas-phase product distribution.
Catalysts Oil/% MAHs/% AHs/%
Zr2Ga5/HZSM-5 48.41 59.30 77.72
Zr2Ga3/HZSM-5 44.16 64.38 86.80
Zr2Ga3/HZSM-5:MCM-41 = 2:1 45.80 73.46 93.11
Tab.5  Effects of metal load and that after adding MCM-41 in terms of oil yield, selectivity to MAHs and AHs
Raw material Catalyst Activity evaluation Sustainability assessment
PE [42] Pt/ZSM-5 Yoila): 62.3%; YBTX: 52% Low economy
High density PE [43] Ga/HY Yoil: 36%; SAHsb): 93.1% Low liquid yield
Sugarcane bagasse and polystyrene [44] MgO:HZSM-5 ratio of 3:1 Yoil: 47%; SMAHs: 56.8?% Low quality products and limited sustainability
Lignin [45] 1.0% Co-S8HZ Yoil: 17.4%; SMAHs: 46.3% Complex process and low quality products
LLDPE (This study) MCM-41Zr2Ga3/HZSM-5 ratio of 1:2 Yoil: 45.8%; SAHs: 93.1%; SBTEX:60.0%; SMAHs: 73.5% Higher quality product (mild temperature)
Tab.6  Evaluation and comparison of different catalysts employed in the open-loop recycling of waste plastics into high-value-added products
Fig.10  Proposed reaction pathway for the rapid catalytic pyrolysis of LLDPE using a mixed catalyst of MCM-41 and Zr2Ga3/HZSM-5.
1 M Chu , Y Liu , X Lou , Q Zhang , J Chen . Rational design of chemical catalysis for plastic recycling. ACS Catalysis, 2022, 12(8): 4659–4679
https://doi.org/10.1021/acscatal.2c01286
2 A I Osman , M Hosny , A S Eltaweil , S Omar , A M Elgarahy , M Farghali , P S Yap , Y S Wu , S Nagandran , K Batumalaie . et al.. Microplastic sources, formation, toxicity and remediation: a review. Environmental Chemistry Letters, 2023, 21(4): 2129–2169
https://doi.org/10.1007/s10311-023-01593-3
3 A I Osman , C Farrell , A H Al-Muhtaseb , A S Al-Fatesh , J Harrison , D W Rooney . Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environmental Sciences Europe, 2020, 32(1): 112
https://doi.org/10.1186/s12302-020-00390-x
4 S D Anuar Sharuddin , F Abnisa , W M A Wan Daud , M K Aroua . Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 2017, 148: 925–934
https://doi.org/10.1016/j.enconman.2017.06.046
5 F Zhang , F Wang , X Wei , Y Yang , S Xu , D Deng , Y Z Wang . From trash to treasure: chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. Journal of Energy Chemistry, 2022, 69: 369–388
https://doi.org/10.1016/j.jechem.2021.12.052
6 Y Nakaji , M Tamura , S Miyaoka , S Kumagai , M Tanji , Y Nakagawa , T Yoshioka , K Tomishige . Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Applied Catalysis B: Environmental, 2021, 285: 119805
https://doi.org/10.1016/j.apcatb.2020.119805
7 X Zhang , H Yang , Z Chen , X Wang , H Feng , J Zhang , J Yu , S Gao , D Lai . Sustainable production of aromatics via catalytic pyrolysis of polyolefins towards the carbon cycle for plastics. Fuel, 2024, 357: 129897
https://doi.org/10.1016/j.fuel.2023.129897
8 Y Peng , Y Wang , L Ke , L Dai , Q Wu , K Cobb , Y Zeng , R Zou , Y Liu , R Ruan . A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 2022, 254: 115243
https://doi.org/10.1016/j.enconman.2022.115243
9 A Samanta , X Bai , B Robinson , H Chen , J Hu . Conversion of light alkane to value-added chemicals over ZSM-5/metal promoted catalysts. Industrial & Engineering Chemistry Research, 2017, 56(39): 11006–11012
https://doi.org/10.1021/acs.iecr.7b02095
10 J Zhang , M Ma , Z Chen , X Zhang , H Yang , X Wang , H Feng , J Yu , S Gao . Production of monocyclic aromatics and light olefins through ex-situ catalytic pyrolysis of low-density polyethylene over Ga/P/ZSM-5 catalyst. Journal of the Energy Institute, 2023, 108: 101235
https://doi.org/10.1016/j.joei.2023.101235
11 R Wu , P Lv , J Wang , Y Bai , J Wei , X Song , W Su , G Yu . Catalytic upgrading of cow manure pyrolysis vapors over zeolite/carbon composites prepared from coal gasification fine slag: high quality bio-oil obtaining and mechanism investigation. Fuel, 2023, 339: 126941
https://doi.org/10.1016/j.fuel.2022.126941
12 J Song , J Wang , Y Pan , X Du , J Sima , C Zhu , F Lou , Q Huang . Catalytic pyrolysis of waste polyethylene into benzene, toluene, ethylbenzene and xylene (BTEX)-enriched oil with dielectric barrier discharge reactor. Journal of Environmental Management, 2022, 322: 116096
https://doi.org/10.1016/j.jenvman.2022.116096
13 N M Phadke , J Van der Mynsbrugge , E Mansoor , A B Getsoian , M Head-Gordon , A T Bell . Characterization of isolated Ga3+ cations in Ga/H-MFI prepared by vapor-phase exchange of H-MFI zeolite with GaCl3. ACS Catalysis, 2018, 8(7): 6106–6126
https://doi.org/10.1021/acscatal.8b01254
14 Y Zhou , H Thirumalai , S K Smith , K H Whitmire , J Liu , A I Frenkel , L C Grabow , J D Rimer . Ethylene dehydroaromatization over Ga-ZSM-5 catalysts: nature and role of gallium speciation. Angewandte Chemie International Edition, 2020, 59(44): 19592–19601
https://doi.org/10.1002/anie.202007147
15 F Momayez , J Towfighi Darian , S M Teimouri Sendesi . Synthesis of zirconium and cerium over HZSM-5 catalysts for light olefins production from naphtha. Journal of Analytical and Applied Pyrolysis, 2015, 112: 135–140
https://doi.org/10.1016/j.jaap.2015.02.006
16 A K Panda , R K Singh , D K Mishra . Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renewable & Sustainable Energy Reviews, 2010, 14(1): 233–248
https://doi.org/10.1016/j.rser.2009.07.005
17 J Wang , J Jiang , Y Sun , X Meng , X Wang , R Ruan , A J Ragauskas , D C W Tsang . Heterogeneous Diels-Alder tandem catalysis for converting cellulose and polyethylene into BTX. Journal of Hazardous Materials, 2021, 414: 125418
https://doi.org/10.1016/j.jhazmat.2021.125418
18 Z Yang , J P Cao , T L Liu , C Zhu , X Y Zhao , X B Feng , Y P Zhao , H C Bai . Boosted production of aromatics by catalyzing upgrade pyrolysis vapors from lignite over Sn-Ga/HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105064
https://doi.org/10.1016/j.jaap.2021.105064
19 F Lin , Y Zhong , Y Ma , Y Sun , X Men , Y Zhu . La2O3-promoted Ni/H-ZSM-5 catalyzed aqueous-phase guaiacol hydrodeoxygenation to cyclohexanol. Journal of Rare Earths, 2023, 41(2): 224–232
https://doi.org/10.1016/j.jre.2022.03.022
20 J Su , T Li , G Luo , Y Zhang , E R Naranov , K Wang . Co-hydropyrolysis of pine and HDPE over bimetallic catalysts: efficient BTEX production and process mechanism analysis. Fuel Processing Technology, 2023, 249: 107845
https://doi.org/10.1016/j.fuproc.2023.107845
21 Z H Du , R Chotchaipitakkul , P Sangteantong , W Donphai , W Limphirat , Y Poo-arporn , S Nijpanich , S Kiatphuengporn , P Jantaratana , M Chareonpanich . Catalytic LPG conversion over Fe-Ga modified ZSM-5 zeolite catalysts with different particle sizes: effect of confined-space zeolite and external magnetic field. Topics in Catalysis, 2023, 66(19-20): 1594–1607
https://doi.org/10.1007/s11244-023-01825-4
22 J Li , C Liu , Z Jia , Y Ye , D Lan , W Meng , J Wang , Z Wang , Y Hu , W Yang . Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene. Frontiers of Chemical Science and Engineering, 2024, 18(4): 45
https://doi.org/10.1007/s11705-024-2406-4
23 A Feliczak-Guzik . Hierarchical zeolites: synthesis and catalytic properties. Microporous and Mesoporous Materials, 2018, 259: 33–45
https://doi.org/10.1016/j.micromeso.2017.09.030
24 Y Hou , X Li , M Sun , C Li , S U H Bakhtiar , K Lei , S Yu , Z Wang , Z Hu , L Chen . et al.. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2021, 15(2): 269–278
https://doi.org/10.1007/s11705-020-1948-3
25 D K Ratnasari , M A Nahil , P T Williams . Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631–637
https://doi.org/10.1016/j.jaap.2016.12.027
26 Rêgo Silva J Manuel , de Morais Araújo A Mabel , da Costa Evangelista J Paulo , da Silva D Ribeiro , Gondim A Duarte , de Araujo A Souza . Evaluation of the kinetic and thermodynamic parameters in catalytic pyrolysis process of sunflower oil using Al-MCM-41 and zeolite H-ZSM-5. Fuel, 2023, 333: 126225
https://doi.org/10.1016/j.fuel.2022.126225
27 S Jin , K Cui , H Guan , M Yang , L Liu , C Lan . Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics. Applied Clay Science, 2012, 56: 1–6
https://doi.org/10.1016/j.clay.2011.11.012
28 Z Wang , Y Ma , S Guo , S Wu , J Zhang , Y Cai , C Huangfu , Z Gu , W Zhao . Preparation and application of lanthanum-cobalt bimetallic modified composite ZSM-5/MCM-41 zeolite: enhancing the stability of aromatic compounds produced by lignin cracking in catalytic pyrolysis of pine sawdust. Applied Catalysis A, General, 2023, 668: 119482
https://doi.org/10.1016/j.apcata.2023.119482
29 J Sun , Y H Lee , R D Yappert , A M LaPointe , G W Coates , B Peters , M M Abu-Omar , S L Scott . Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics. Chem, 2023, 9(8): 2318–2336
https://doi.org/10.1016/j.chempr.2023.05.017
30 L Fu , Q Xiong , Q Wang , L Cai , Z Chen , Y Zhou . Catalytic pyrolysis of waste polyethylene using combined CaO and Ga/ZSM-5 catalysts for high value-added aromatics production. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9612–9623
https://doi.org/10.1021/acssuschemeng.2c02881
31 L Fu , H Lin , L Zhu , Q Wang , H Luo , Q Xiong , V S Vladimirovich , Y Zhou . Enhancing catalytic performance for waste plastic upgrading: simultaneous regulation of pore structure and acid sites in Ga-doped desilicated HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2023, 175: 106186
https://doi.org/10.1016/j.jaap.2023.106186
32 H Zhou , F Zhang , K Ji , J Gao , P Liu , K Zhang , S Wu . Relationship between acidity and activity on propane conversion over metal-modified HZSM-5 catalysts. Catalysts, 2021, 11(10): 1138
https://doi.org/10.3390/catal11101138
33 A Caiola , B Robinson , X Bai , D Shekhawat , J Hu . Study of the hydrogen pretreatment of gallium and platinum promoted ZSM-5 for the ethane dehydroaromatization reaction. Industrial & Engineering Chemistry Research, 2021, 60(30): 11421–11431
https://doi.org/10.1021/acs.iecr.1c01555
34 S Vichaphund , D Aht-ong , V Sricharoenchaikul , D Atong . Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renewable Energy, 2015, 79: 28–37
https://doi.org/10.1016/j.renene.2014.10.013
35 P Li , D Li , H Yang , X Wang , H Chen . Effects of Fe-, Zr-, and co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors. Energy & Fuels, 2016, 30(4): 3004–3013
https://doi.org/10.1021/acs.energyfuels.5b02894
36 Z Chen , L Xu , X Zhang . Upgrading of polyethylene to hydrocarbon fuels over the Fe-modified Pt/Al2O3 catalysts at a mild condition without external H2. Chemical Engineering Journal, 2022, 446: 136213
https://doi.org/10.1016/j.cej.2022.136213
37 J W Kim , S H Park , J Jung , J K Jeon , C H Ko , K E Jeong , Y K Park . Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry. Bioresource Technology, 2013, 136: 431–436
https://doi.org/10.1016/j.biortech.2013.03.062
38 C Pang , R Han , Y Su , Y Zheng , M Peng , Q Liu . Effect of the acid site in the catalytic degradation of volatile organic compounds: a review. Chemical Engineering Journal, 2023, 454: 140125
https://doi.org/10.1016/j.cej.2022.140125
39 A Kostyniuk , D Bajec , B Likozar . Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor. Renewable Energy, 2022, 188: 240–255
https://doi.org/10.1016/j.renene.2022.01.090
40 V B Custodis , S A Karakoulia , K S Triantafyllidis , J A van Bokhoven . Catalytic fast pyrolysis of lignin over high-surface-area mesoporous aluminosilicates: effect of porosity and acidity. ChemSusChem, 2016, 9(10): 1134–1145
https://doi.org/10.1002/cssc.201600105
41 E L Schultz , C A Mullen , A A Boateng . Aromatic hydrocarbon production from eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts. Energy Technology, 2017, 5(1): 196–204
https://doi.org/10.1002/ente.201600206
42 W Wang , C Yao , X Ge , X Pu , J Yuan , W Sun , W Chen , X Feng , G Qian , X Duan . et al.. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(27): 14933–14940
https://doi.org/10.1039/D3TA01917A
43 K Akubo , M A Nahil , P T Williams . Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of the Energy Institute, 2019, 92(1): 195–202
https://doi.org/10.1016/j.joei.2017.10.009
44 H Iftikhar , M Zeeshan , S Iqbal , B Muneer , M Razzaq . Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresource Technology, 2019, 289: 121647
https://doi.org/10.1016/j.biortech.2019.121647
45 D Zhang , T Jin , J Peng , J Ma , J Zhang , X Tian , M Ding . In-situ synthesis of micro/mesoporous HZSM-5 zeolite for catalytic pyrolysis of lignin to produce monocyclic aromatics. Fuel, 2023, 334: 126588
https://doi.org/10.1016/j.fuel.2022.126588
46 K Qian , W Tian , S Yan , W Li , L Yin , D Guo , Z Yang , D Chen , Y Feng . Aromatization of HDPE and PP over Ga-promoted zeolite: effects of pretreatment and zeolite type. Fuel, 2024, 357: 129781
https://doi.org/10.1016/j.fuel.2023.129781
47 L S Diaz-Silvarrey , K Zhang , A N Phan . Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chemistry, 2018, 20(8): 1813–1823
https://doi.org/10.1039/C7GC03662K
48 F Zhang , M Zeng , R D Yappert , J Sun , Y H Lee , A M LaPointe , B Peters , M M Abu-Omar , S L Scott . Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science, 2020, 370(6515): 437–441
https://doi.org/10.1126/science.abc5441
49 C Vogt , B M Weckhuysen . The concept of active site in heterogeneous catalysis. Nature Reviews. Chemistry, 2022, 6(2): 89–111
https://doi.org/10.1038/s41570-021-00340-y
50 J Du , L Zeng , T Yan , C Wang , M Wang , L Luo , W Wu , Z Peng , H Li , J Zeng . Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nature Nanotechnology, 2023, 18(7): 772–779
https://doi.org/10.1038/s41565-023-01429-9
51 Y T Cheng , J Jae , J Shi , W Fan , G W Huber . Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angewandte Chemie International Edition, 2012, 51(6): 1387–1390
https://doi.org/10.1002/anie.201107390
52 G Li , B Hou , A Wang , X Xin . Cong Y, Wang X, Li N, Zhang T. Making JP-10 superfuel affordable with a lignocellulosic platform compound. Angewandte Chemie International Edition, 2019, 58(35): 12154–12158
53 A I Osman , J Meudal , F Laffir , J Thompson , D Rooney . Enhanced catalytic activity of Ni on η-Al2O3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane. Applied Catalysis B: Environmental, 2017, 212: 68–79
https://doi.org/10.1016/j.apcatb.2016.12.058
[1] Pengzhi Bei, Antony Rajendran, Jie Feng, Wen-Ying Li. Deciphering the intermolecular interactions for separating bicyclic and tricyclic aromatics via different naphthalene-based solvents[J]. Front. Chem. Sci. Eng., 2024, 18(10): 111-.
[2] Zihan Xu, Huajie Xu, Lu Liu, Rongpei Jiang, Haisheng Ren, Xiangyuan Li. High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1743-1750.
[3] Reyila Abuduwayiti, Feng-Yun Ma, Xing Fan. Catalytic hydrogenation of insoluble organic matter of CS2/Acetone from coal over mesoporous HZSM-5 supported Ni and Ru[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1505-1513.
[4] Pengzhen CHEN, Shouying HUANG, Jijie ZHANG, Shengping WANG, Xinbin MA. Enhanced CuCl dispersion by regulating acidity of MCM-41 for catalytic oxycarbonylation of ethanol to diethyl carbonate[J]. Front. Chem. Sci. Eng., 2015, 9(2): 224-231.
[5] Shengping WANG, Changqing MA, Yun SHI, Xinbin MA. Ti incorporation in MCM-41 mesoporous molecular sieves using hydrothermal synthesis[J]. Front Chem Sci Eng, 2014, 8(1): 95-103.
[6] Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Front Chem Sci Eng, 2012, 6(3): 253-258.
[7] Qian WANG, Lei WANG, Hui WANG, Zengxi LI, Xiangping ZHANG, Suojiang ZHANG, Kebin ZHOU. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
[8] ZHU Xinli, YU Kailu, CHENG Dangguo, XIA Qing, LIU Changjun, ZHANG Yueping. Modification of acidity of Mo-Fe/HZSM-5 zeolite via argon plasma treatment[J]. Front. Chem. Sci. Eng., 2008, 2(1): 55-58.
[9] LI Qiang, ZHANG Ying, DOU Tao, LI Yuping, WANG Shan, SUN Famin. Synthesis, characterization and catalytic properties of mesoporous MCM-48 containing zeolite secondary building units[J]. Front. Chem. Sci. Eng., 2007, 1(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed