Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 126    https://doi.org/10.1007/s11705-024-2477-2
Amine-functionalized metal-organic frameworks loaded with Ag nanoparticles for cycloaddition of CO2 to epoxides
Huiyu Fu, Jiewen Wu, Changhai Liang(), Xiao Chen()
State Key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the advantages of low raw material cost and 100% atom utilization, the synthesis of high value-added chemical product cyclic carbonates by the cycloaddition of CO2 to epoxides has become one of the most prospective approaches to achieve the industrial utilization of CO2. In the reported catalytic systems, the complexity of the catalyst synthesis process, high cost, separation difficulties, and low CO2 capture limit the catalytic efficiency and its large-scale application. In this paper, Ag nanoparticles loaded on polyethyleneimine (PEI)-modified UiO-66-NH2 (Ag/PEI@UiO-66-NH2) are successfully synthesized by in situ immersion reduction. The Ag nanoparticles and the amino groups on the surfaces of PEI@UiO-66-NH2 contribute to the adsorption of CO2 and polarization of C–O bonds in epoxides, thereby boosting the conversion capability for the CO2 cycloaddition reaction. At the amount of propylene oxide of 0.25 mol and the catalyst dosage of 1% of the substrate, the yield and selectivity of propylene carbonate are up to 99%. In addition, the stability and recyclability of Ag/PEI@UiO-66-NH2 catalyst are attained. The Ag/PEI@UiO-66-NH2 catalyst also demonstrates a wide range of activity and distinctive selectivity toward cyclo-carbonates in the cycloaddition of CO2 to epoxides. This work provides a guide to designing a highly efficient catalyst for in situ capture and high-value utilization of CO2 in industrial applications.

Keywords cycloaddition      CO2 capture      cyclic carbonates      amine-functionalized UiO-66-NH2      Ag NPs     
Corresponding Author(s): Changhai Liang,Xiao Chen   
Just Accepted Date: 21 May 2024   Issue Date: 19 July 2024
 Cite this article:   
Huiyu Fu,Jiewen Wu,Changhai Liang, et al. Amine-functionalized metal-organic frameworks loaded with Ag nanoparticles for cycloaddition of CO2 to epoxides[J]. Front. Chem. Sci. Eng., 2024, 18(11): 126.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2477-2
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/126
  Scheme1 Synthesis scheme of Ag/PEI@UiO-66-NH2.
Fig.1  (a) XRD patterns and (b) FTIR spectra of UiO-66-NH2, UiO-66-GD, and PEI@UiO-66-NH2 samples.
Fig.2  SEM images of (a) UiO-66-NH2, (b) UiO-66-GD, and (c) PEI@UiO-66-NH2 samples.
Fig.3  (a) FTIR spectra of xPEI@UiO-66-NH2 (x = 30%, 40%, 50%, 60%, and 70%) and (b) XRD patterns of Ag/xPEI@UiO-66-NH2 (x = 30%, 40%, 50%, 60%, and 70%).
Fig.4  (a) SEM image, (b) TEM image with the particle size statistics of Ag NPs (c), (d) HRTEM image, (e) STEM image, and (f) element mappings of Ag/50% PEI@UiO-66-NH2.
Sample SBETa)/(m2·g–1) Smesob)/(m2·g–1) Smicroa)/(m2·g–1) Vtotalc)/(cm3·g–1)
PEI@UiO-66-NH2 542 542 0 0.40
Ag/PEI@UiO-66-NH2 141 106 35 0.21
Tab.1  Pore structure of PEI@UiO-66-NH2 and Ag/PEI@UiO-66-NH2
Fig.5  Nitrogen adsorption and desorption isotherms and pore size distributions of (a) PEI@UiO-66-NH2 and (b) Ag/PEI@UiO-66-NH2 at 77 K.
Fig.6  CO2 adsorption and desorption isotherms of (a) PEI@UiO-66-NH2 and (b) Ag/PEI@UiO-66-NH2 at 273 and 298 K.
Fig.7  XPS spectra of Ag/50% PEI@UiO-66-NH2 with (a) full spectrum, (b) Ag 3d.
Entry Catalyst Co-catalyst P /MPa T /°C Time/h Yield/%
1 2.5 80 2.5 < 5
2 TBAB 2.5 80 2.5 32
3 UiO-66-NH2 2.5 80 2.5 < 5
4 PEI@UiO-66-NH2 2.5 80 2.5 < 5
5 UiO-66-NH2 TBAB 2.5 80 2.5 28
6 PEI@UiO-66-NH2 TBAB 2.5 80 2.5 46
7 Ag/UiO-66-NH2 TBAB 2.5 80 2.5 57
8 Ag/PEI@UiO-66-NH2 TBAB 2.5 80 2.5 73
Tab.2  Catalysts screening for the cycloaddition of CO2 with propylene oxidea, b)
Fig.8  Effect of (a) reaction pressure, (b) reaction temperature, (c) reaction time, and (d) amount of PEI introduced on the cycloaddition of CO2 and propylene oxide.
Entry Cat. Co-cat. Amount of PO/mmol t/h T/°C P/MPa Yield/% Ref.
1 MIL-101-N(Bnme2) Br 17 5 100 1.4 93 [20]
2 UiO-66-OH TBAB 10 2 140 1 91 [16]
3 UiO-66-OMe TBAB 10 2 140 1 62 [16]
4 MIL/K-OH(MW) TBAB 24 5 80 0.8 82 [41]
5 Zn1 TBAB 20 3 80 1 82 [42]
6 Ag/PEI@UiO-66-NH2 TBAB 2500 2.5 100 2.5 95 This work
7 Ag/PEI@UiO-66-NH2 TBAB 2500 2.5 110 2.5 99 This work
Tab.3  Comparison of catalytic conditions and performances of different catalysts
Fig.9  The cycling stability test of Ag/PEI@UiO-66-NH2 catalyst.
Entry Epoxides Products t /h Yield/%
1 2.5 95
2 2.5 94
3 2.5 77
4 2.5 67
5 2.5 51
Tab.4  Substrate scope of the cycloaddition of CO2 catalyzed by Ag/PEI@UiO-66-NH2a, b)
Fig.10  Possible mechanism for the cycloaddition of CO2 with PO over Ag/PEI@UiO-66-NH2 catalyst.
1 M He , Y Sun , B Han . Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angewandte Chemie International Edition, 2022, 61(15): e202112835
https://doi.org/10.1002/anie.202112835
2 M D Burkart , N Hazari , C L Tway , E L Zeitler . Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catalysis, 2019, 9(9): 7937–7956
https://doi.org/10.1021/acscatal.9b02113
3 Q Chen , M Lv , Z Tang , H Wang , W Wei , Y Sun . Opportunities of integrated systems with CO2 utilization technologies for green fuel & chemicals production in a carbon-constrained society. Journal of CO2 Utilization, 2016, 14: 1–9
4 Z Chen , Y Zhi , W Li , S Li , Y Liu , X Tang , T Hu , L Shi , S Shan . One-step synthesis of nitrogen-rich organic polymers for efficient catalysis of CO2 cycloaddition. Environmental Science and Pollution Research International, 2023, 30(25): 67290–67302
https://doi.org/10.1007/s11356-023-26728-5
5 P P Pescarmona . Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100457
https://doi.org/10.1016/j.cogsc.2021.100457
6 J Zhang , L Wang , S Liu , Z Li . Synthesis of diverse polycarbonates by organocatalytic copolymerization of CO2 and epoxides: from high pressure and temperature to ambient conditions. Angewandte Chemie International Edition, 2022, 61(4): e202111197
https://doi.org/10.1002/anie.202111197
7 F Zhang , Y Wang , X Zhang , X Zhang , H Liu , B Han . Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition. Green Chemical Engineering, 2020, 1(2): 82–93
https://doi.org/10.1016/j.gce.2020.09.008
8 Y Ecochard , J Leroux , B Boutevin , R Auvergne , S Caillol . From multi-functional siloxane-based cyclic carbonates to hybrid polyhydroxyurethane thermosets. European Polymer Journal, 2019, 120: 109280
https://doi.org/10.1016/j.eurpolymj.2019.109280
9 C Martín , G Fiorani , A W Kleij . Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis, 2015, 5(2): 1353–1370
https://doi.org/10.1021/cs5018997
10 F Della Monica , B Maity , T Pehl , A Buonerba , A De Nisi , M Monari , A Grassi , B Rieger , L Cavallo , C Capacchione . [OSSO]-type iron(III) complexes for the low-pressure reaction of carbon dioxide with epoxides: catalytic activity, reaction kinetics, and computational study. ACS Catalysis, 2018, 8(8): 6882–6893
https://doi.org/10.1021/acscatal.8b01695
11 J W Comerford , I D V Ingram , M North , X Wu . Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 2015, 17(4): 1966–1987
https://doi.org/10.1039/C4GC01719F
12 S Zhong , L Liang , B Liu , J Sun . ZnBr2/DMF as simple and highly active Lewis acid-base catalysts for the cycloaddition of CO2 to propylene oxide. Journal of CO2 Utilization, 2014, 6: 75–79
13 A Belinchón , R Santiago , E Hernández , C Moya , P Navarro , J Palomar . Reaction-extraction platforms towards CO2-derived cyclic carbonates catalyzed by ionic liquids. Journal of Cleaner Production, 2022, 368: 133189
https://doi.org/10.1016/j.jclepro.2022.133189
14 J Q Wang , W G Cheng , J Sun , T Y Shi , X P Zhang , S J Zhang . Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids. RSC Advances, 2013, 4(5): 2360–2367
https://doi.org/10.1039/C3RA45918G
15 Y A Alassmy , P P Pescarmona . The role of water revisited and enhanced: a sustainable catalytic system for the conversion of CO2 into cyclic carbonates under mild conditions. ChemSusChem, 2019, 12(16): 3856–3863
https://doi.org/10.1002/cssc.201901124
16 J Noh , Y Kim , H Park , J Lee , M Yoon , M H Park , Y Kim , M Kim . Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2018, 64: 478–483
https://doi.org/10.1016/j.jiec.2018.04.010
17 K Yamaguchi , K Ebitani , T Yoshida , H Yoshida , K Kaneda . Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 1999, 121(18): 4526–4527
https://doi.org/10.1021/ja9902165
18 S M Masoom Nataj , S Kaliaguine , F G Fontaine . Highly efficient catalysts for CO2 fixation using guanidinium-functionalized Zr-MOFs. ChemCatChem, 2023, 15(10): e202300079
https://doi.org/10.1002/cctc.202300079
19 S Liu , M L Gao , C N Li , L Liu , Z B Han . Superhydrophobic MOFs with enhanced catalytic activity for chemical fixation of CO2. Dalton Transactions, 2023, 52(40): 14319–14323
https://doi.org/10.1039/D3DT02188B
20 A Xu , Z Chen , L Jin , B Chu , J Lu , X He , Y Yao , B Li , L Dong , M Fan . Quaternary ammonium salt functionalized MIL-101-NH2(Cr) as a bifunctional catalyst for the cycloaddition of CO2 with epoxides to produce cyclic carbonates. Applied Catalysis A, General, 2021, 624: 118307
https://doi.org/10.1016/j.apcata.2021.118307
21 Y Jiang , P Tan , S C Qi , X Q Liu , J H Yan , F Fan , L B Sun . Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angewandte Chemie International Edition, 2019, 58(20): 6600–6604
https://doi.org/10.1002/anie.201900141
22 D Bahamon , W Anlu , S Builes , M Khaleel , L F Vega . Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: a molecular simulation study. Frontiers in Chemistry, 2021, 8: 574622
https://doi.org/10.3389/fchem.2020.574622
23 S Yan , W Li , D He , G He , H Chen . Recent research progress of metal-organic frameworks (MOFs) based catalysts for CO2 cycloaddition reaction. Molecular Catalysis, 2023, 550: 113608
https://doi.org/10.1016/j.mcat.2023.113608
24 Z Taşcı , A Kunduracıoğlu , İ Kani , B Çetinkaya . A new application area for Ag-NHCs: CO2 fixation catalyst. ChemCatChem, 2012, 4(6): 831–835
https://doi.org/10.1002/cctc.201100430
25 C Y Gao , C Mao , Y Yang , N Xu , J Liu , X Chen , J Liu , L Duan . Epoxide activation by a silver phosphonate for heterogeneous catalysis of CO2 cycloaddition. CrystEngComm, 2022, 25(1): 108–113
https://doi.org/10.1039/D2CE01240E
26 D Wu , X Lu , Y Tang , F Gao , G Yang , Y Y Wang . Light-assisted CO2 cycloaddition over a nanochannel cadmium-organic framework loaded with silver nanoparticles. ACS Applied Nano Materials, 2023, 6(7): 6197–6207
https://doi.org/10.1021/acsanm.3c00499
27 X Liu , C Hu , J Wu , H Zhu , Y Li , P Cui , F Wei . The assembly of novel Ag-based NP@MOFs mesoporous spherical composites and their enhanced catalytic performance in photodegradation and chemical conversion of CO2 with epoxide. Journal of Solid State Chemistry, 2021, 296: 121889
https://doi.org/10.1016/j.jssc.2020.121889
28 G Li , X Sui , X Cai , W Hu , X Liu , M Chen , Y Zhu . Precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2. Angewandte Chemie International Edition, 2021, 60(19): 10573–10576
https://doi.org/10.1002/anie.202100071
29 S Li , F Feng , S Chen , X Zhang , Y Liang , S Shan . Preparation of UiO-66-NH2 and UiO-66-NH2/sponge for adsorption of 2,4-dichlorophenoxyacetic acid in water. Ecotoxicology and Environmental Safety, 2020, 194: 110440
https://doi.org/10.1016/j.ecoenv.2020.110440
30 S Z Hu , T Huang , N Zhang , Y Z Lei , Y Wang . Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Separation and Purification Technology, 2022, 297: 121470
https://doi.org/10.1016/j.seppur.2022.121470
31 K Li , J Jiang , F Yan , S Tian , X Chen . The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Applied Energy, 2014, 136: 750–755
https://doi.org/10.1016/j.apenergy.2014.09.057
32 P C Lemaire , D T Lee , J Zhao , G N Parsons . Reversible low-temperature metal node distortion during atomic layer deposition of Al2O3 and TiO2 on UiO-66-NH2 metal-organic framework crystal surfaces. ACS Applied Materials & Interfaces, 2017, 9(26): 22042–22054
https://doi.org/10.1021/acsami.7b05214
33 H Zeng , Z Yu , L Shao , X Li , M Zhu , Y Liu , X Feng , X Zhu . A novel strategy for enhancing the performance of membranes for dyes separation: embedding PAA@UiO-66-NH2 between graphene oxide sheets. Chemical Engineering Journal, 2021, 403: 126281
https://doi.org/10.1016/j.cej.2020.126281
34 A Pankajakshan , M Sinha , A A Ojha , S Mandal . Water-stable nanoscale zirconium-based metal-organic frameworks for the effective removal of glyphosate from aqueous media. ACS Omega, 2018, 3(7): 7832–7839
https://doi.org/10.1021/acsomega.8b00921
35 Z Ji , H Sun , Y Zhu , D Zhang , L Wang , F Dai , Y Zhao , L Chen . Enhanced selective removal of lead ions using a functionalized PAMAM@UiO-66-NH2 nanocomposite: experiment and mechanism. Microporous and Mesoporous Materials, 2021, 328: 111433
https://doi.org/10.1016/j.micromeso.2021.111433
36 W Z Xiao , L P Xiao , Y Q Yang , S R Zhai , R C Sun . Catalytic degradation of organic pollutants for water remediation over Ag nanoparticles immobilized on amine-functionalized metal-organic frameworks. Nano Research, 2022, 15(9): 7887–7895
https://doi.org/10.1007/s12274-022-4436-x
37 J Jin , J Xue , D Wu , G Yang , Y Wang . Improved performance of the pyrimidine-modified porous In-MOF and an in situ prepared composite Ag@In-MOF material. Chemical Communications, 2022, 58(56): 7749–7752
https://doi.org/10.1039/D2CC02639B
38 X Zhang , H Liu , Y Shi , J Han , Z Yang , Y Zhang , C Long , J Guo , Y Zhu , X Qiu . et al.. Boosting CO2 conversion with terminal alkynes by molecular architecture of graphene oxide-supported Ag nanoparticles. Matter, 2020, 3(2): 558–570
https://doi.org/10.1016/j.matt.2020.07.022
39 Z Wu , Q Liu , X Yang , X Ye , H Duan , J Zhang , B Zhao , Y Huang . Knitting aryl network polymers-incorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO2 as carboxylic acid. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9634–9639
https://doi.org/10.1021/acssuschemeng.7b02678
40 X Lan , Q Li , L Cao , C Du , L Ricardez Sandoval , G Bai . Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: a highly efficient catalyst for CO2 conversion. Applied Surface Science, 2020, 508: 145220
https://doi.org/10.1016/j.apsusc.2019.145220
41 V I Isaeva , M N Timofeeva , I A Lukoyanov , E Y Gerasimov , V N Panchenko , V V Chernyshev , L M Glukhov , L M Kustov . Novel MOF catalysts based on calix[4]arene for the synthesis of propylene carbonate from propylene oxide and CO2. Journal of CO2 Utilization, 2022, 66: 102262
42 Aouni N El , Redondo C López , M B Yeamin , A Aghmiz , M Reguero , A M Masdeu-Bultó . Influence of structural properties of zinc complexes with N-donor ligands on the catalyzed cycloaddition of CO2 to epoxides into cyclic carbonates. Molecular Catalysis, 2023, 538: 112992
https://doi.org/10.1016/j.mcat.2023.112992
43 D H Lan , F M Yang , S L Luo , C T Au , S F Yin . Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. Carbon, 2014, 73: 351–360
https://doi.org/10.1016/j.carbon.2014.02.075
44 R Patra , D Sarma . A thiol-containing zirconium MOF functionalized with silver nanoparticles for synergistic CO2 cycloaddition reactions. Dalton Transactions, 2023, 52(31): 10795–10804
https://doi.org/10.1039/D3DT01583A
[1] FCE-24032-OF-FH_suppl_1 Download
[1] Fan Zhang, Yanzhu Guo, Xianhong Wu, Ce Gao, Qingda An, Zhongjian Tian, Runcang Sun. Preparation of a novel lactose-lignin hydrogel catalyst with self-reduction capacity for nitrogenous wastewater treatment[J]. Front. Chem. Sci. Eng., 2024, 18(9): 99-.
[2] Yongjian Wei, Ying Li, Yunfei Xu, Yinghui Sun, Tong Xu, Haiou Liang, Jie Bai. Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts[J]. Front. Chem. Sci. Eng., 2024, 18(5): 53-.
[3] Dang Duc Viet, Doan Thi Thao, Khuong Duy Anh, Toshiki Tsubota. Autohydrolysis treatment of bamboo and potassium oxalate (K2C2O4) activation of bamboo product for CO2 capture utilization[J]. Front. Chem. Sci. Eng., 2024, 18(4): 41-.
[4] Li Zhao, Xinru Liu, Zihao Ye, Bin Hu, Haoyu Wang, Ji Liu, Bing Zhang, Qiang Lu. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study[J]. Front. Chem. Sci. Eng., 2024, 18(3): 25-.
[5] Ting Li, Ji Xiong, Minghui Chen, Quan Shi, Xiangyu Li, Yu Jiang, Yaqing Feng, Bao Zhang. A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion[J]. Front. Chem. Sci. Eng., 2024, 18(1): 3-.
[6] Jianlin Li, Ti Wang, Pei Liu, Zheng Li. Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants[J]. Front. Chem. Sci. Eng., 2022, 16(2): 198-209.
[7] Mahsa Javidi Nobarzad, Maryam Tahmasebpoor, Mohammad Heidari, Covadonga Pevida. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1460-1475.
[8] Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou. CO2 capture using membrane contactors: a systematic literature review[J]. Front. Chem. Sci. Eng., 2021, 15(4): 720-754.
[9] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[10] Zhihong Xu, Tao Jiang, Hao Zhang, Yujun Zhao, Xinbin Ma, Shengping Wang. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 698-708.
[11] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[12] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[13] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[14] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[15] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed