Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 134    https://doi.org/10.1007/s11705-024-2485-2
Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst
Huimin Gao1, Jinpeng Zhang1, Fangyuan Zhang1, Jieying Jing1,2(), Wen-Ying Li1()
1. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
 Download: PDF(1237 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The photocatalytic reduction of CO2 into formic acid is a feasible approach to alleviate the effects of global climate change and achieve chemical energy storage. It is important to design highly active photocatalysts to improve the selectivity and yield of formic acid. In this study, TiO2-based catalysts were prepared and loaded with Pd nanoparticles via an impregnation process. The Pd/H-TiO2 catalyst demonstrated superior CO2 reduction activity and a high formic acid production rate of 14.14 mmolcat·g–1·h–1. The excellent catalytic performance observed in the presence of a Pd/H-TiO2 catalyst is ascribed to the synergy between Ov and Pd. The presence of Ov led to increase in CO2 adsorption while Pd loading enhanced the photogenerated electron-hole pair separation. Electron transfer from H-TiO2 to Pd also contributed to CO2 activation.

Keywords CO2 reduction      formic acid      photocatalysis      TiO2 catalyst     
Corresponding Author(s): Jieying Jing,Wen-Ying Li   
Just Accepted Date: 04 June 2024   Issue Date: 08 August 2024
 Cite this article:   
Wen-Ying Li,Jieying Jing,Fangyuan Zhang, et al. Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst[J]. Front. Chem. Sci. Eng., 2024, 18(11): 134.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2485-2
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/134
Fig.1  (a) XRD patterns of TiO2 at different hydrogenation temperatures and Pd/H-TiO2, (b) TEM image of catalysts, (c) HRTEM image of Pd/H-TiO2, (d) EDS elemental mapping of Pd/H-TiO2.
Fig.2  XPS spectra of (a) Ti 2p, (b) O 1s, (c) Pd 3d, and (d) EPR of TiO2, H-TiO2, and Pd/H-TiO2 obtained at room temperature.
Fig.3  (a) HCOOH production rate within 1 h with different catalysts, (b) cyclic stability of the Pd/H-TiO2 catalyst.
Fig.4  (a) UV-vis spectra of various photocatalysts, (b) Tauc plots, (c) Mott-Schottky curves at 2000 Hz, (d) band structures.
Model d(OCO2-TiTiO2)/? d(CCO2-OCO2)/? d(CCO2-OTiO2)/? ∠CO2(O-C-O)/(° ) d(Pd-CCO2)/? Eads/eV
CO2-TiO2 2.21/2.21 1.26/1.26 1.42 135.8 –0.104
CO2-H-TiO2- Ov1 2.23/2.20 1.25/1.26 1.41 134.8 –0.357
CO2-H-TiO2- Ov2 2.20/2.30 1.26/1.24 1.45 136.9 ? 0.312
CO2-H-TiO2-Ov12a) 2.21/2.20 1.25/1.26 1.44 136.7 ? 0.379
CO2-Pd/TiO2 1.23/1.22 145.4 2.05 ? 0.412
CO2-Pd/H-TiO2-Ov1 1.28/1.22 134.3 2.04 ? 0.885
CO2-Pd/H-TiO2-Ov2 1.23/1.23 145.4 2.01 ? 0.600
CO2-Pd/H-TiO2-Ov12 1.24/1.23 143.2 2.01 ? 0.114
Tab.1  Adsorption geometry and energy of CO2 adsorbed on TiO2 or Pd/H-TiO2 surface
Fig.5  (a–c) Adsorption configurations of CO2 with and without Ov and Pd and the charge density difference upon CO2 adsorption. Yellow and cyan represent electron accumulation and loss, respectively, isosurfaces = 0.0002 e·Bohr–3.
Fig.6  (a) Transient photocurrent response, (b) PL spectra of TiO2, H-TiO2, and Pd/H-TiO2.
Fig.7  DRIFTS spectra of the Pd/H-TiO2 catalyst after the photocatalytic reaction.
Fig.8  Mechanism of the photocatalysis of CO2 to produce HCOOH.
1 Z M Yuan , X L Zhu , X Q Gao , C H An , Z Wang , C Zuo , D D Dionysiou , H He , Z Y Jiang . Enhancing photocatalytic CO2 reduction with TiO2-based materials: strategies, mechanisms, challenges, and perspectives. Environmental Science and Ecotechnology, 2024, 20: 100368
https://doi.org/10.1016/j.ese.2023.100368
2 S W Wang , L G Wang , D S Wang , Y D Li . Recent advances of single-atom catalysts in CO2 conversion. Energy & Environmental Science, 2023, 16(7): 2759–2803
https://doi.org/10.1039/D3EE00037K
3 F P Pan , B Y Li , W Deng , Z C Du , Y Gang , G F Wang , Y Li . Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Applied Catalysis B: Environmental, 2019, 252: 240–249
https://doi.org/10.1016/j.apcatb.2019.04.025
4 M X Liu , Y K Xu , Y Meng , L J Wang , H Wang , Y C Huang , N Onishi , L Wang , Z J Fan , Y Himeda . Heterogeneous catalysis for carbon dioxide mediated hydrogen storage technology based on formic acid. Advanced Energy Materials, 2022, 12(31): 2200817
https://doi.org/10.1002/aenm.202200817
5 C C Lv , X H Bai , S B Ning , C X Song , Q Q Guan , B Liu , Y G Li , J H Ye . Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance. ACS Nano, 2023, 17(3): 1725–1738
https://doi.org/10.1021/acsnano.2c09025
6 S Q Zhang , H Y Yu , Y Wang , Y X Yan , J Dai , D J Shu , X L Wu . Surface dual metal occupations in Fe-doped FexBi2–xO3 induce highly efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2023, 15(20): 25049–25057
https://doi.org/10.1021/acsami.3c02784
7 D Saito , Y Tamaki , O Ishitani . Photocatalysis of CO2 reduction by a Ru(II)-Ru(II) supramolecular catalyst adsorbed on Al2O3. ACS Catalysis, 2023, 13(7): 4376–4383
https://doi.org/10.1021/acscatal.2c06247
8 H Q Pan , M D Heagy . Photons to formate: a review on photocatalytic reduction of CO2 to formic acid. Nanomaterials, 2020, 10(12): 2422
https://doi.org/10.3390/nano10122422
9 J Xiong , A J Yang , Q Sun , H X Gao , H Y Zhang , Y Mao , Z W Liang . Insights into CO2 activation and charge transfer in photocatalytic reduction of CO2 on pure and metal single atom modified TiO2 surfaces. Molecular Catalysis, 2023, 547: 113370
https://doi.org/10.1016/j.mcat.2023.113370
10 H Khan , M U H Shah . Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: a review. Journal of Environmental Chemical Engineering, 2023, 11(6): 111532
https://doi.org/10.1016/j.jece.2023.111532
11 G H Li , Y Y Sun , Q M Zhang , Z Gao , W Sun , X X Zhou . Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 410: 128397
https://doi.org/10.1016/j.cej.2020.128397
12 Y W Wu , L Yan , Y Q Yu , C Y Jing . Photocatalytic CO2 reduction to CH4 on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science & Technology, 2021, 11(18): 6103–6111
https://doi.org/10.1039/D1CY00750E
13 A Ali Khan , M Tahir . Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4. Energy & Fuels, 2021, 35(10): 8922–8943
https://doi.org/10.1021/acs.energyfuels.1c00671
14 H L Zhao , F P Pan , Y Li . A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics, 2017, 3(1): 17–32
https://doi.org/10.1016/j.jmat.2016.12.001
15 G X Song , X F Lang , C X Huo , S H Ren , Y J Wang , Z K Tang , X G Chen . Mechanism of photocatalytic reduction of CO2 to CH4 on F-doped defective anatase TiO2 (101) surface: a density functional theory study. Surface Science, 2023, 730: 122247
https://doi.org/10.1016/j.susc.2023.122247
16 S Wang , X W Nie , J B Lin , F S Ding , C S Song , X W Guo . Computational design of single-atom modified Ti-MOFs for photocatalytic CO2 reduction to C1 chemicals. ChemSusChem, 2024, 17(8): e202301619
https://doi.org/10.1002/cssc.202301619
17 F Wei , T Luo , Y Wang , L C Kong , J J Feng , Z Q Li , J Q Lu , F Yang . Boosting CO2 electroreduction to formate via in-situ formation of ultrathin Bi nanosheets decorated with monodispersed Pd nanoparticles. Journal of Catalysis, 2023, 424: 50–63
https://doi.org/10.1016/j.jcat.2023.05.008
18 F Zhang , Y H Li , M Y Qi , Z R Tang , Y J Xu . Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 268: 118380
https://doi.org/10.1016/j.apcatb.2019.118380
19 Y X Shi , L L Li , Z Xu , F Guo , Y Li , W L Shi . Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity. Applied Surface Science, 2023, 616: 156466
https://doi.org/10.1016/j.apsusc.2023.156466
20 B B Jin , X Ye , H Zhong , F M Jin . Light-driven hydrogenation of bicarbonate into formate over nano-Pd/TiO2. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6798–6805
https://doi.org/10.1021/acssuschemeng.0c01616
21 M Y Zheng , J Yang , W L Fan , X Zhao . Oxygen vacancy and nitrogen doping collaboratively boost performance and stability of TiO2-supported Pd catalysts for CO2 photoreduction: a DFT study. Physical Chemistry Chemical Physics, 2021, 23(43): 24801–24813
https://doi.org/10.1039/D1CP03693A
22 J Li , H Zhou , H Zhuo , Z Z Wei , G L Zhuang , X Zhong , S W Deng , X N Li , J G Wang . Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(5): 2264–2272
https://doi.org/10.1039/C7TA09831F
23 J J M Vequizo , K Kato , F Amano , A Yamakata . Unfolding the impact of H2-reduction treatment in enhancing the photocatalytic activity of rutile TiO2 based on photocarriers dynamics. Journal of Physical Chemistry C, 2023, 127(22): 10411–10418
https://doi.org/10.1021/acs.jpcc.3c00855
24 L X Sang , Y X Zhao , C Burda . TiO2 nanoparticles as functional building blocks. Chemical Reviews, 2014, 114(19): 9283–9318
https://doi.org/10.1021/cr400629p
25 J B Zhong , Y Lu , W D Jiang , Q M Meng , X Y He , J Z Li , Y Q Chen . Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. Journal of Hazardous Materials, 2009, 168(2-3): 1632–1635
https://doi.org/10.1016/j.jhazmat.2009.02.158
26 P Yilmaz , A M Lacerda , I Larrosa , S Dunn . Photoelectrocatalysis of rhodamine B and solar hydrogen production by TiO2 and Pd/TiO2 catalyst systems. Electrochimica Acta, 2017, 231: 641–649
https://doi.org/10.1016/j.electacta.2017.02.035
27 T N Phan , Y K Park , I G Lee , C H Ko . Enhancement of C–O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides. Applied Catalysis A, General, 2017, 544: 84–93
https://doi.org/10.1016/j.apcata.2017.06.029
28 E M Samsudin , S B A Hamid , J C Juan , W J Basirun , A E Kandjani . Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science, 2015, 359: 883–896
https://doi.org/10.1016/j.apsusc.2015.10.194
29 L Liu , P Y Yu , X B Chen , S S Mao , D Z Shen . Hydrogenation and disorder in engineered black TiO2. Physical Review Letters, 2013, 111(6): 065505
https://doi.org/10.1103/PhysRevLett.111.065505
30 L B Mo , Y Wang , Y Bai , Q Y Xiang , Q Li , W Q Yao , J O Wang , K Ibrahim , H H Wang , C H Wan . et al.. Hydrogen impurity defects in rutile TiO2. Scientific Reports, 2015, 5(1): 17634
https://doi.org/10.1038/srep17634
31 Y S Zhang , J X Liu , K Qian , A P Jia , D Li , L Shi , J Hu , J F Zhu , W X Huang . Structure sensitivity of Au-TiO2 strong metal-support interactions. Angewandte Chemie International Edition, 2021, 60(21): 12074–12081
https://doi.org/10.1002/anie.202101928
32 J L Li , M Zhang , Z J Guan , Q Y Li , C Q He , J J Yang . Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 206: 300–307
https://doi.org/10.1016/j.apcatb.2017.01.025
33 D L Jiang , Y M Zhou , Q X Zhang , Q Song , C J Zhou , X L Shi , D Li . Synergistic integration of AuCu Co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4. ACS Applied Materials & Interfaces, 2021, 13(39): 46772–46782
https://doi.org/10.1021/acsami.1c14371
34 Q H Zhu , Z S Deng , H J Xie , M Y Xing , J L Zhang . Investigation of concerted proton-electron donors for promoting the selective production of HCOOH in CO2 photoreduction. ACS Catalysis, 2023, 13(5): 3254–3262
https://doi.org/10.1021/acscatal.3c00101
35 R Peña , R Romero , D Amado-Piña , R Natividad . Cu/TiO2 photo-catalyzed CO2 chemical reduction in a multiphase capillary reactor. Topics in Catalysis, 2024, 67(5-8): 377–393
https://doi.org/10.1007/s11244-023-01875-8
36 H N Zhang , Y F Li , J Z Wang , N N Wu , H Sheng , C C Chen , J C Zhao . An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Applied Catalysis B: Environmental, 2021, 284: 119692
https://doi.org/10.1016/j.apcatb.2020.119692
37 S Iguchi , S Kikkawa , K Teramura , S Hosokawa , T Tanaka . Investigation of the electrochemical and photoelectrochemical properties of Ni-Al LDH photocatalysts. Physical Chemistry Chemical Physics, 2016, 18(20): 13811–13819
https://doi.org/10.1039/C6CP01646D
38 X Y Huang , R Lei , J Yuan , F Gao , C K Jiang , W H Feng , J D Zhuang , P Liu . Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282: 119586
https://doi.org/10.1016/j.apcatb.2020.119586
39 D Zheng , Y F Xue , J Wang , P S Varbanov , J J Klemes , C Yin . Nanocatalysts in photocatalytic water splitting for green hydrogen generation: challenges and opportunities. Journal of Cleaner Production, 2023, 414: 137700
https://doi.org/10.1016/j.jclepro.2023.137700
40 Q Quan , S J Xie , B Weng , Y Wang , Y J Xu . Revealing the double-edged sword role of graphene on boosted charge transfer versus active site control in TiO2 nanotube arrays@RGO/MoS2 heterostructure. Small, 2018, 14(21): 1704531
https://doi.org/10.1002/smll.201704531
41 R Basumatary , B Basumatary , D Konwar , A Ramchiary . Tailored highly efficient Co-doped TiO2/CoTiO3 heterojunction photocatalyst for methylene blue degradation under visible light. Journal of the Korean Ceramic Society, 2023, 60(3): 547–559
https://doi.org/10.1007/s43207-022-00284-z
42 J Ren , S Ouyang , H Xu , X Meng , T Wang , D Wang , J Ye . Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657
https://doi.org/10.1002/aenm.201601657
43 L Chang , L V Besteiro , J C Sun , E Y Santiago , S K Gray , Z M Wang , A O Govorov . Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Letters, 2019, 4(10): 2552–2568
https://doi.org/10.1021/acsenergylett.9b01617
44 Y H Cao , R Y Zhang , T L Zhou , S M Jin , J D Huang , L Q Ye , Z A Huang , F Wang , Y Zhou . Zhou Y. B–O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Applied Materials & Interfaces, 2020, 12(8): 9935–9943
https://doi.org/10.1021/acsami.9b21157
45 A Zindrou , Y Deligiannakis . Quantitative in situ monitoring of Cu-atom release by Cu2O nanocatalysts under photocatalytic CO2 reduction conditions: new insights into the photocorrosion mechanism. Nanomaterials (Basel, Switzerland), 2023, 13(11): 1773
https://doi.org/10.3390/nano13111773
46 A Li , Q Cao , G Y Zhou , B Schmidt , W J Zhu , X T Yuan , H L Huo , J L Gong , M Antonietti . Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angewandte Chemie International Edition, 2019, 58(41): 14549–14555
https://doi.org/10.1002/anie.201908058
47 T X Qu , S Z Wei , Z Xiong , J Y Zhang , Y C Zhao . Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology, 2023, 251: 107933
https://doi.org/10.1016/j.fuproc.2023.107933
[1] FCE-24038-of-GH_suppl_1 Download
[1] Xiaoyu Ma, Longlong Wang, Houde She, Yu Zhou, Lei Wang, Jingwei Huang, Qizhao Wang. Facile fabrication of CdIn2S4/TiO2 heterojunction for enhanced solar light efficient CO2 reduction[J]. Front. Chem. Sci. Eng., 2024, 18(9): 105-.
[2] Wei Lan, Maodi Wang, Huicong Dai, Qihua Yang. Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system[J]. Front. Chem. Sci. Eng., 2024, 18(4): 37-.
[3] Yuxin Li, Junxin Guo, Rui Han, Zhao Wang. Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties[J]. Front. Chem. Sci. Eng., 2024, 18(2): 15-.
[4] Zulfiqar Ali, Jiliang Ma, Dongnv Jin, Rui Cui, Runcang Sun. Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst[J]. Front. Chem. Sci. Eng., 2024, 18(2): 17-.
[5] Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa. Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations[J]. Front. Chem. Sci. Eng., 2024, 18(12): 150-.
[6] Prince Joby, Yesaiyan Manojkumar, Antony Rajendran, Rajadurai Vijay Solomon. Computational catalysis on the conversion of CO2 to methane—an update[J]. Front. Chem. Sci. Eng., 2024, 18(11): 132-.
[7] Han Xie, Mitang Wang, Zhigao Sun, Xiaoyu Lu, Dongliang Zhang, Siqingaowa Jin, Siheng Chen. Efficient visible light photodegradation of BiVO4:Yb3+/Tm3+ with high content of tetragonal phase[J]. Front. Chem. Sci. Eng., 2024, 18(11): 122-.
[8] Shenshen Zheng, Fengying Zhang, Yuman Jiang, Tao Xu, Han Li, Heng Guo, Ying Zhou. Advances in catalysts and reaction systems for electro/photocatalytic ammonia production[J]. Front. Chem. Sci. Eng., 2024, 18(10): 112-.
[9] Ying Wang, Yue Han, Ruiyang Zhao, Jishu Han, Lei Wang. Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1301-1310.
[10] Rui Cui, Dongnv Jin, Gaojie Jiao, Zhendong Liu, Jiliang Ma, Runcang Sun. Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for efficient photocatalytic degradation of methylene blue[J]. Front. Chem. Sci. Eng., 2023, 17(7): 918-929.
[11] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[12] Shiqing Ma, Chundong Peng, Zeyu Jia, Yanmei Feng, Kai Chen, Hao Ding, Daimei Chen, Zhong-Yong Yuan. Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1718-1727.
[13] Andrew Nattestad, Klaudia Wagner, Gordon G. Wallace. Scale up of reactors for carbon dioxide reduction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 116-122.
[14] Zambaga Otgonbayar, Kwang Youn Cho, Chong-Hun Jung, Won-Chun Oh. Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with electrochemical performance[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1438-1459.
[15] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed