Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2025, Vol. 19 Issue (1) : 3    https://doi.org/10.1007/s11705-024-2510-5
Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication
Zhijie Shang1, Qiangqiang Song1, Bin Han2, Jing Ma1, Dongyang Li1, Cancan Zhang3, Xin Li4, Jinghe Yang1, Junyong Zhu1, Wenpeng Li1(), Jing Wang1,5(), Yatao Zhang1,5
. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
. Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
. Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
. State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(2032 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nowadays, global warming caused by the increasing levels of CO2 has become a serious environmental problem. Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation, energy-efficientness and high efficiency. Interfacial polymerization process, as a facile and well-established technique for preparing membranes with a thin selective layer, has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain. To push forward such an interfacial polymerization process in the research of CO2 separation membranes, herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO2 separation. First, a comprehensive and critical review of the progress in the monomers, nanoparticles and interfacial polymerization process optimization for preparing CO2 separation membrane is presented. In addition, the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO2 separation are outlined. Finally, the possible challenges and development prospects of CO2 separation membranes by interfacial polymerization process are proposed. It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO2 separation, thereby fostering its development.

Keywords interfacial polymerization      CO2 separation      monomer      nanoparticle     
Corresponding Author(s): Wenpeng Li,Jing Wang   
Just Accepted Date: 18 July 2024   Issue Date: 28 November 2024
 Cite this article:   
Zhijie Shang,Qiangqiang Song,Bin Han, et al. Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication[J]. Front. Chem. Sci. Eng., 2025, 19(1): 3.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2510-5
https://academic.hep.com.cn/fcse/EN/Y2025/V19/I1/3
Fig.1  Global CO2 emissions 1970–2022. Reprinted with permission from Ref. [3], copyright 2023, Springer Nature.
Fig.2  Synthesis of IP membrane and amine and hydroxyl group aqueous phase monomers.
Support Aqueous phase monomers Organic phase monomers CO2 permeance/GPU CO2/N2 selectivity(gas ratio) CO2/CH4 selectivity(gas ratio) Ref.
PES TETAC6H18N4, MW 146.23 TMC 13.3 94.1 (10/90) [ 28]
PSf MPDC6H8N2, MW: 108.14 IPC 15.2 14.4 (pure) [ 29]
PSf DNMDAMC7H19N3, MW: 145.25 TMC 173 70 (20/80) 37 (10/90) [ 30]
PSf/PDMS DGBAMEC8H20N2O2, MW: 176.26 TMC 973 84 (15/85) 31 (10/90) [ 31]
PSf/PDMS PEA TMC 360 67.2 (20/80) 31.5 (10/90) [ 32]
PSf/PDMS DAPPC10H24N4, MW: 200.32 TMC 420 85 (15/85) 40 (10/90) [ 33]
PSf CHMAC8H18N2, MW: 114.19 TMC 25 28 (30/70) [ 34]
PSf PIPC4H10N2, MW: 86.14 IPC 2.4 4.32 (pure) 22 (pure) [ 35]
PSf/PDMS PI TMC 330 30 32 [ 36]
PSf/PDMS DGBAME&DNMDAM TMC 1612 138 (15/85) 52 (10/90) [ 37]
PSf/PDMS DGBAME&DAMBSC7H7N2NaO2, MW: 174.13 TMC 5831 86 (15/85) [ 38]
Tab.1  Membranes synthesized by amine monomers and their performancesa)
Fig.3  (a) Synthesis of membrane from amine-end-capped PI oligomers and TMC and the three-dimensional (3D) view of an amorphous cell containing the cross-linked network; (b) schematic diagram of preparing the selective layer by the IP process. Reprinted with permission from Ref. [36], copyright 2021, American Chemical Society.
Fig.4  Scheme of the PI separation layer fabricated by the IP process (PEI: polyetherimide). Reprinted with permission from Ref. [43], copyright 2024, Elsevier.
Support Aqueous phase monomers Organic phase monomers CO2 permeance/GPU CO2/N2 selectivity(gas ratio) CO2/CH4 selectivity(gas ratio) Ref.
PSf/PDMS MEDAC5H13NO2, MW: 119.16 TMC 2905 64 (15/85) [ 46]
PSf/PDMS TTSBIC21H24O4, MW: 340.42 TMC 870 43 (15/85) [ 47]
PES β -CDC42H70O35, MW: 1134.98 TMC 200 10.53 (pure) [ 48]
PES/N-GQD β -CD TMC 174.5 23.3 (50/50) [ 49]
PSf/PDMS TTSBI&MEDA TMC 1800 370 (15/85) [ 50]
PSf/PDMS MED β CD&MPDC44H76N2O34, MW: 1177.07 TMC 180 40.5 (pure) 69 (pure) [ 51]
PSf/PDMS H β -CD&DNMDAMC45H76O36, MW: 1193.07 TMC 2792 171 (15/85) [ 52]
Tab.2  Membranes synthesized by hydroxyl monomers and their performancea)
Fig.5  IP membranes synthesized by TMC with hydroxyl monomers. (a) TTSBI. Reprinted with permission from Ref. [47], copyright 2019, Elsevier. (b) CDs. Reprinted with permission from Ref. [54], copyright 2018, Wiley-Blackwell. (c) MEDβCD. Reprinted with permission from Ref. [51], copyright 2023, Elsevier.
Fig.6  Gas transport mechanisms in Hβ-CD membrane. Reprinted with permission from Ref. [52], copyright 2023, Elsevier.
Support Aqueous phase monomers Organic phase monomers Nanoparticles CO2 permeance/GPU CO2/N2 selectivity (gas ratio) CO2/CH4 selectivity (gas ratio) Ref.
PSf DNMDAM TMC Silica 59.4 85.4 (20/80) [58]
PSf/PDMS DGBAME TMC PMMA-MWCNT 70.54 67.18 (pure) 29.03 (pure) [59]
PSf DABA TMC C-MWCNTs 21.02 24.74 (pure) 18.45 (pure) [60]
PSf DNMDAM&DGBAME TMC CNT&GO 66.3 47.1 (pure) 36.5 (pure) [57]
PSf PIP IPC CDC 2.32 24.08 (pure) [61]
PSf DNMDAM&TOTDAM TMC BN 46.04 43.61 (pure) [62]
PSf PEA TMC PG 70 130 (pure) [63]
PSf PEA TMC MMT 95.03 37 (pure) [64]
PES Polyethyleneimine TMC mGO 73 60 (pure) [65]
PSf TETA TMC UiO-66-NH2 27.1 58.3 (30/70) [66]
PSf TETA TMC Zn ion 128.5 106.7 (50/50) 55.2 (50/50) [67]
PSf/PDMS DNMDAM TMC ZIF-8 2740 104 (15/85) [68]
PSf/PDMS DNMDAM TMC NH2-ZIF-8 1572 230 (15/85) [69]
PSf/PDMS PIP TMC TpPa-1 854 148 (15/85) [70]
Tab.3  Commonly used nanoparticles in IP membranes for CO2 separation and their membrane performancea)
Fig.7  Separation mechanism of the IP membranes containing BN. Reprinted with permission from Ref. [62], copyright 2021, Academic Press Inc.
Fig.8  Schematic of fabrication process of TFN membranes by embedding (a) PG. Reprinted with permission from Ref. [63], copyright 2017, Elsevier. (b) C-MWCNTs. Reprinted with permission from Ref. [60], copyright 2021, Elsevier. (c) UiO-66-NH2. Reprinted with permission from Ref. [66], copyright 2021, American Chemical Society.
Fig.9  Schematic illustration of covalent bonds between PA and (a) NH2-ZIF-8. Reprinted with permission from Ref. [69], copyright 2017, Elsevier. (b) TpPa-1. Reprinted with permission from Ref. [70], copyright 2022, Chemical Industry Press. (c) The process of forming IP membranes via the swelling-controlled nanofiller positioning method. Reprinted with permission from Ref. [68], copyright 2021, Elsevier. (d) The homogeneous distribution of GO/CNT within the PA layer, Reprinted with permission from Ref. [57], copyright 2019, Elsevier.
Fig.10  Process of preparing interlayer in IP process with (a) GQDs/N-GQDs. Reprinted with permission from Ref. [49], copyright 2022, Elsevier. (b) 2D MOF (Zn2(bim)4) nanosheets. Reprinted with permission from Ref. [90], copyright 2021, Elsevier.
Fig.11  Schematic diagram for the model design, development, and application. (a) Network structure of the multitask multilayer perception, (b) online learning process with the introduction of expert experience, (c) illustration of the model training and evaluation, and (d) interpretation of model and guided design of membranes. Reprinted with permission from Ref. [106], copyright 2022, American Chemical Society.
1 T Wilberforce , A G Olabi , E T Sayed , K Elsaid , M A Abdelkareem . Progress in carbon capture technologies. Science of the Total Environment, 2020, 761: 143203
https://doi.org/10.1016/j.scitotenv.2020.143203
2 Z Qin , Y Ma , J Wei , H Guo , B Wang , J Deng , C Yi , N Li , S Yi , Y Deng . et al.. Recent progress in ternary mixed matrix membranes for CO2 separation. Green Energy & Environment, 2023, 9(5): 831–858
https://doi.org/10.1016/j.gee.2023.04.008
3 Z Liu , Z Deng , S Davis , P Ciais . Monitoring global carbon emissions in 2022. Nature Reviews. Earth & Environment, 2023, 4(4): 205–206
https://doi.org/10.1038/s43017-023-00406-z
4 D W Keith . Why capture CO2 from the atmosphere. Science, 2009, 325(5948): 1654–1655
https://doi.org/10.1126/science.1175680
5 S P Teong , Y Zhang . Direct capture and separation of CO2 from air. Green Energy & Environment, 2024, 9(3): 413–416
https://doi.org/10.1016/j.gee.2023.06.005
6 R S Haszeldine . Carbon capture and storage: how green can black be. Science, 2009, 325(5948): 1647–1652
https://doi.org/10.1126/science.1172246
7 Z Zhang , T Wang , M J Blunt , E J Anthony , A H A Park , R W Hughes , P A Webley , J Yan . Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278: 115627
https://doi.org/10.1016/j.apenergy.2020.115627
8 H O Eric , R G Sigurdur . 4. Carbon capture and storage (CCS). Geochemical Perspectives, 2023, 12(2): 240–310
9 G Chen , T Wang , G Zhang , G Liu , W Jin . Membrane materials targeting carbon capture and utilization. Advanced Membranes, 2022, 2: 100025
https://doi.org/10.1016/j.advmem.2022.100025
10 I Sreedhar , R Vaidhiswaran , B M Kamani , A Venugopal . Process and engineering trends in membrane based carbon capture. Renewable & Sustainable Energy Reviews, 2017, 68: 659–684
https://doi.org/10.1016/j.rser.2016.10.025
11 N A B Fauzan , H A Mannan , R Nasir , D F B Mohshim , H Mukhtar . Various techniques for preparation of thin-film composite mixed-matrix membranes for CO2 separation. Chemical Engineering & Technology, 2019, 42(12): 2608–2620
https://doi.org/10.1002/ceat.201800520
12 R W Baker , B Freeman , J Kniep , Y I Huang , T C Merkel . CO2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57(47): 15963–15970
https://doi.org/10.1021/acs.iecr.8b02574
13 M C Yu , L J Bai , S Moioli , P Tontiwachwuthikul , T V Plisko , A V Bildyukevich , Y N Feng , H Liu . Hybrid CO2 capture processes consisting of membranes: a technical and techno-economic review. Advanced Membranes, 2023, 3: 100071
https://doi.org/10.1016/j.advmem.2023.100071
14 H H Golsefid , O Alizadeh , F Dorosti . Chemical vapor deposition technique to fabricate zeolitic imidazolate framework-8/polysulfone membrane for CO2/CH4 separation. Theoretical Foundations of Chemical Engineering, 2023, 56(6): 1116–1126
https://doi.org/10.1134/S0040579522060070
15 C Koutsiantzi , A Kampylafka , A Zouboulis , M Mitrakas , E S Kikkinides . Theoretical and experimental study of CO2 removal from biogas employing a hollow fiber polyimide membrane. Sustainable Chemistry and Pharmacy, 2023, 35: 101221
https://doi.org/10.1016/j.scp.2023.101221
16 M Isegawa . Chemical modification of dimethylpolysiloxane for enhancement of CO2 binding enthalpy. Physical Chemistry Chemical Physics, 2023, 25(11): 7881–7892
https://doi.org/10.1039/D2CP02790A
17 P C Sahoo , M Kumar , S K Puri , S S V Ramakumar . Enzyme inspired complexes for industrial CO2 capture: opportunities and challenges. Journal of CO2 Utilization, 2018, 24: 419–429
18 M Zhang , X Jing , S Zhao , P Shao , Y Zhang , S Yuan , Y Li , C Gu , X Wang , Y Ye . et al.. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation. Angewandte Chemie International Edition, 2019, 58(26): 8768–8772
https://doi.org/10.1002/anie.201904385
19 E Lasseuguette , Gándara B Comesaña . Polymer membranes for gas separation. Membranes (Basel), 2022, 12(2): 207
https://doi.org/10.3390/membranes12020207
20 C Y Park , C I Kong , E Y Kim , C H Lee , K S Kim , J H Lee , J Lee , S Y Moon . High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment. Chemical Engineering Journal, 2022, 455: 140883
https://doi.org/10.1016/j.cej.2022.140883
21 H Guo , W Xu , J Wei , Y Ma , Z Qin , Z Dai , J Deng , L Deng . Effects of porous supports in thin-film composite membranes on CO2 separation performances. Membranes, 2023, 13(3): 359
https://doi.org/10.3390/membranes13030359
22 C Ji , Z Zhai , C Jiang , P Hu , S Zhao , S Xue , Z Yang , T He , Q J Niu . Recent advances in high-performance TFC membranes: a review of the functional interlayers. Desalination, 2021, 500: 114869
https://doi.org/10.1016/j.desal.2020.114869
23 C Ge , M Sheng , Y Yuan , F Shi , Y Yang , S Zhao , J Wang , Z Wang . Recent advances of the interfacial polymerization process in gas separation membranes fabrication. Journal of Membrane Science, 2023, 683: 121854
https://doi.org/10.1016/j.memsci.2023.121854
24 T Zhu , Q Xia , J Zuo , S Liu , X Yu , Y Wang . Recent advances of thin film composite membranes for pervaporation applications: a comprehensive review. Advanced Membranes, 2021, 1: 100008
https://doi.org/10.1016/j.advmem.2021.100008
25 C Jiang , L Zhang , P Li , H Sun , Y Hou , Q J Niu . Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination. ACS Applied Materials & Interfaces, 2020, 12(22): 25304–25315
https://doi.org/10.1021/acsami.0c05166
26 Y Chen , Q J Niu , Y Hou , H Sun . Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: a review. Separation and Purification Technology, 2023, 330: 125282
https://doi.org/10.1016/j.seppur.2023.125282
27 Q Yang , Q Lin , S Sammarchi , J Li , S Li , D Wang . Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach. Greenhouse Gases: Science and Technology, 2021, 11(1): 52–68
https://doi.org/10.1002/ghg.2031
28 J Zhao , Z Wang , J Wang , S Wang . Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. Journal of Membrane Science, 2006, 283(1-2): 346–356
https://doi.org/10.1016/j.memsci.2006.07.004
29 S Sridhar , B Smitha , S Mayor , B Prathab , T M Aminabhavi . Gas permeation properties of polyamide membrane prepared by interfacial polymerization. Journal of Materials Science, 2007, 42(22): 9392–9401
https://doi.org/10.1007/s10853-007-1813-5
30 X Yu , Z Wang , Z Wei , S Yuan , J Zhao , J Wang , S Wang . Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1-2): 265–278
https://doi.org/10.1016/j.memsci.2010.06.043
31 S Li , Z Wang , C Zhang , M Wang , F Yuan , J Wang , S Wang . Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131
https://doi.org/10.1016/j.memsci.2013.02.038
32 A A M Salih , C Yi , H Peng , B Yang , L Yin , W Wang . Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118
https://doi.org/10.1016/j.memsci.2014.08.025
33 W He , Z Wang , W Li , S Li , Z Bai , J Wang , S Wang . Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation. Journal of Membrane Science, 2015, 476: 171–181
https://doi.org/10.1016/j.memsci.2014.11.039
34 E S Jo , X An , P G Ingole , W K Choi , Y S Park , H K Lee . CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287
https://doi.org/10.1016/j.cjche.2016.07.010
35 A Awad , I H Aljundi . Interfacial polymerization of facilitated transport polyamide membrane prepared from PIP and IPC for gas separation applications. Korean Journal of Chemical Engineering, 2018, 35(8): 1700–1709
https://doi.org/10.1007/s11814-018-0079-8
36 X Xu , J Dong , X Xiao , X Zhao , Q Zhang . Constructing thin and cross-linked polyimide membranes by interfacial reaction for efficient CO2 separation. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5546–5556
https://doi.org/10.1021/acssuschemeng.0c08779
37 S Li , Z Wang , X Yu , J Wang , S Wang . High-performance membranes with multi-permselectivity for CO2 separation. Advanced Materials, 2012, 24(24): 3196–3200
https://doi.org/10.1002/adma.201200638
38 M Wang , Z Wang , S Li , C Zhang , J Wang , S Wang . A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551
https://doi.org/10.1039/C2EE23080A
39 S Andrew Lee , G W Stevens , S E Kentish . Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429: 349–354
https://doi.org/10.1016/j.memsci.2012.11.047
40 D Bonenfant , M Mimeault , R Hausler . Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Industrial & Engineering Chemistry Research, 2003, 42(14): 3179–3184
https://doi.org/10.1021/ie020738k
41 C Scholes , G Chen , H Lu , S Kentish . Crosslinked PEG and PEBAX membranes for concurrent permeation of water and carbon dioxide. Membranes, 2015, 6(1): 1
https://doi.org/10.3390/membranes6010001
42 N Du , H B Park , M M Dal Cin , M D Guiver . Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2011, 9: 1863–1890
43 X Ding , W Wang , X Cheng , X Fan , H Zhao , Q Xin , Y Zhang . Composite membranes based on ether oxygen-rich polyimide with superior CO2/N2 separation properties prepared by interfacial polymerization. Journal of Membrane Science, 2024, 693: 122355
https://doi.org/10.1016/j.memsci.2023.122355
44 S Park , R Patel , Y C Woo . Polyester-based thin-film composite membranes for nanofiltration of saline water: a review. Desalination, 2023, 572: 117138
https://doi.org/10.1016/j.desal.2023.117138
45 M M Rahman . Material design concepts and gas separation mechanism of CO2 selective polyether-based multiblock copolymers. Macromolecular Rapid Communications, 2023, 44(14): 2300114
https://doi.org/10.1002/marc.202300114
46 F YuanZ WangS LiJ WangS Wang. Formation-structure-performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2012, 421–422: 327–341
47 S Yu , S Li , Y Liu , S Cui , X Shen . High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573: 425–438
https://doi.org/10.1016/j.memsci.2018.12.029
48 H Sun , S Bao , H Zhao , Y Chen , Y Wang , C Jiang , P Li , Q Jason Niu . Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Separation and Purification Technology, 2020, 251: 117370
https://doi.org/10.1016/j.seppur.2020.117370
49 Y Niu , Y Chen , S Bao , H Sun , Y Wang , B Ge , P Li , Y Hou . Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Separation and Purification Technology, 2022, 293: 121035
https://doi.org/10.1016/j.seppur.2022.121035
50 C Ma , Q Li , Z Wang , M Gao , J Wang , X Cao . High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation. Journal of Membrane Science, 2022, 652: 120459
https://doi.org/10.1016/j.memsci.2022.120459
51 X Li , C Jiao , X Zhang , X Li , X Song , Z Zhang , H Jiang . Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. Journal of Membrane Science, 2023, 666: 121165
https://doi.org/10.1016/j.memsci.2022.121165
52 N Li , Z Wang , J Wang . Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD)/polyamide (PA) membranes for CO2 separation. Journal of Membrane Science, 2023, 668: 121211
https://doi.org/10.1016/j.memsci.2022.121211
53 N Li , Z Wang , J Wang . Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture. Journal of Membrane Science, 2022, 642: 119946
https://doi.org/10.1016/j.memsci.2021.119946
54 J Liu , D Hua , Y Zhang , S Japip , T S Chung . Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933
https://doi.org/10.1002/adma.201705933
55 Z Zhang , K Fan , Y Liu , S Xia . A review on polyester and polyester-amide thin film composite nanofiltration membranes: synthesis, characteristics and applications. Science of the Total Environment, 2022, 858: 159922
https://doi.org/10.1016/j.scitotenv.2022.159922
56 N H Khdary , B T Almuarqab , G El Enany . Nanoparticle-embedded polymers and their applications: a review. Membranes, 2023, 13(5): 537
https://doi.org/10.3390/membranes13050537
57 K C Wong , P S Goh , T Taniguchi , A F Ismail , K Zahri . The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon, 2019, 149: 33–44
https://doi.org/10.1016/j.carbon.2019.04.031
58 X Yu , Z Wang , J Zhao , F Yuan , S Li , J Wang , S Wang . An effective method to improve the performance of fixed carrier membrane via incorporation of CO2-selective adsorptive silica nanoparticles. Chinese Journal of Chemical Engineering, 2011, 19(5): 821–832
https://doi.org/10.1016/S1004-9541(11)60062-1
59 K C Wong , P S Goh , B C Ng , A F Ismail . Thin film nanocomposite embedded with polymethyl methacrylate modified multi-walled carbon nanotubes for CO2 removal. RSC Advances, 2015, 5(40): 31683–31690
https://doi.org/10.1039/C5RA00039D
60 O Choi , S Karki , R R Pawar , S Hazarika , P G Ingole . A new perspective of functionalized MWCNT incorporated thin film nanocomposite hollow fiber membranes for the separation of various gases. Journal of Environmental Chemical Engineering, 2021, 9(1): 104774
https://doi.org/10.1016/j.jece.2020.104774
61 A Awad , I H Aljundi . Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas. Energy, 2018, 157: 188–199
https://doi.org/10.1016/j.energy.2018.05.136
62 K C Wong , P S Goh , N D Suzaimi , Z C Ng , A F Ismail , X Jiang , X Hu , T Taniguchi . Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride. Journal of Colloid and Interface Science, 2021, 603: 810–821
https://doi.org/10.1016/j.jcis.2021.06.156
63 H Li , X Ding , Y Zhang , J Liu . Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68
https://doi.org/10.1016/j.memsci.2017.08.046
64 Y Zhang , H Wang , Y Zhang , X Ding , J Liu . Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137
https://doi.org/10.1016/j.seppur.2017.07.078
65 O Choi , I Hossain , I Jeong , C H Park , Y Kim , T H Kim . Modified graphene oxide-incorporated thin-film composite hollow fiber membranes through interface polymerization on hydrophilic substrate for CO2 separation. Membranes, 2021, 11(9): 650
https://doi.org/10.3390/membranes11090650
66 C Jiao , X Song , X Zhang , L Sun , H Jiang . MOF-mediated interfacial polymerization to fabricate polyamide membranes with a homogeneous nanoscale striped turing structure for CO2/CH4 separation. ACS Applied Materials & Interfaces, 2021, 13(15): 18380–18388
https://doi.org/10.1021/acsami.1c03737
67 X Zhang , C Jiao , X Li , X Song , T V Plisko , A V Bildyukevich , H Jiang . Zn ion-modulated polyamide membrane with enhanced facilitated transport effect for CO2 separation. Separation and Purification Technology, 2022, 292: 121051
https://doi.org/10.1016/j.seppur.2022.121051
68 N Li , Z Wang , M Wang , M Gao , H Wu , S Zhao , J Wang . Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2021, 624: 119095
https://doi.org/10.1016/j.memsci.2021.119095
69 S Yu , S Li , S Huang , Z Zeng , S Cui , Y Liu . Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation. Journal of Membrane Science, 2017, 540: 155–164
https://doi.org/10.1016/j.memsci.2017.06.047
70 H Xu , W Feng , M Sheng , Y Yuan , B Wang , J Wang , Z Wang . Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation. Chinese Journal of Chemical Engineering, 2022, 43: 152–160
https://doi.org/10.1016/j.cjche.2022.02.014
71 P Bandyopadhyay , T T Nguyen , X Li , N H Kim , J H Lee . Enhanced hydrogen gas barrier performance of diaminoalkane functionalized stitched graphene oxide/polyurethane composites. Composites. Part B, Engineering, 2017, 117: 101–110
https://doi.org/10.1016/j.compositesb.2017.02.035
72 A Baniani , M P Rivera , J Marreiros , R P Lively , S Vasenkov . Influence of polymer modification on intra-MOF self-diffusion in MOF-based mixed matrix membranes. Microporous and Mesoporous Materials, 2023, 359: 112648
https://doi.org/10.1016/j.micromeso.2023.112648
73 X Cui , G Kong , Y Feng , L Li , W Fan , J Pang , L Fan , R Wang , H Guo , Z Kang . et al.. Interfacial polymerization of MOF “monomers” to fabricate flexible and thin membranes for molecular separation with ultrafast water transport. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(32): 17528–17537
https://doi.org/10.1039/D1TA04049A
74 Q Qian , P A Asinger , M J Lee , G Han , K Mizrahi Rodriguez , S Lin , F M Benedetti , A X Wu , W S Chi , Z P Smith . MOF-based membranes for gas separations. Chemical Reviews, 2020, 120(16): 8161–8166
https://doi.org/10.1021/acs.chemrev.0c00119
75 S OksanaO SubhamD AnkitaS AndreasH FrederikK Alexander. Tiny windows in reticular nanomaterials for molecular sieving gas separation membranes. Advanced Functional Materials, 2023, 2306202
76 S Aydin , C Altintas , S Keskin . High-throughput screening of COF membranes and COF/polymer MMMs for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2022, 14(18): 21738–21749
https://doi.org/10.1021/acsami.2c04016
77 B Wang , Z Qiao , J Xu , J Wang , X Liu , S Zhao , Z Wang , M D Guiver . Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly. Advanced Materials, 2020, 32(22): 1907701
https://doi.org/10.1002/adma.201907701
78 S Yu , M Liu , Z Lü , Y Zhou , C Gao . Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride. Journal of Membrane Science, 2009, 344(1-2): 155–164
https://doi.org/10.1016/j.memsci.2009.07.046
79 X Li , Z Wang , X Han , Y Liu , C Wang , F Yan , J Wang . Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: a review. Journal of Membrane Science, 2021, 640: 119765
https://doi.org/10.1016/j.memsci.2021.119765
80 L E Peng , Z Yao , Z Yang , H Guo , C Y Tang . Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes: seeing is believing. Environmental Science & Technology, 2020, 54(11): 6978–6986
https://doi.org/10.1021/acs.est.0c01427
81 M Shi , Z Wang , S Zhao , J Wang , S Wang . A support surface pore structure re-construction method to enhance the flux of TFC RO membrane. Journal of Membrane Science, 2017, 541: 39–52
https://doi.org/10.1016/j.memsci.2017.06.087
82 Y Li , Z Guo , S Li , B Van Der Bruggen . Interfacially polymerized thin-film composite membranes for organic solvent nanofiltration. Advanced Materials Interfaces, 2021, 8(3): 2001671
https://doi.org/10.1002/admi.202001671
83 R Dai , J Li , Z Wang . Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Advances in Colloid and Interface Science, 2020, 282: 102204
https://doi.org/10.1016/j.cis.2020.102204
84 Z Wang , S Liang , Y Kang , W Zhao , Y Xia , J Yang , H Wang , X Zhang . Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122: 101450
https://doi.org/10.1016/j.progpolymsci.2021.101450
85 Z Tan , S Chen , X Peng , L Zhang , C Gao . Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521
https://doi.org/10.1126/science.aar6308
86 M Hu , W Fu , K Guan , R R Gonzales , Q Song , A Matsuoka , Z Mai , Y H Chiao , P Zhang , Z Li . et al.. Regulating interfacial polymerization via a multi-functional calcium carbonate based interlayer for a highly permselective nanofiltration membrane. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(16): 8836–8844
https://doi.org/10.1039/D2TA10050A
87 S Gao , Y Zhu , Y Gong , Z Wang , W Fang , J Jin . Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano, 2019, 13(5): 5278–5290
https://doi.org/10.1021/acsnano.8b09761
88 Z Yang , Z Zhou , H Guo , Z Yao , X Ma , X Song , S Feng , C Tang . Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance. Environmental Science & Technology, 2018, 52(16): 9341–9349
https://doi.org/10.1021/acs.est.8b02425
89 H Z Chen , Z Thong , P Li , T S Chung . High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053
https://doi.org/10.1016/j.ijhydene.2014.01.047
90 Y Ma , W Zhang , H Li , C Zhang , H Pan , Y Zhang , X Feng , K Tang , J Meng . A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Separation and Purification Technology, 2021, 261: 118283
https://doi.org/10.1016/j.seppur.2020.118283
91 Y He , Y Zhang , F Liang , Y Zhu , J Jin . Chlorine resistant polyamide desalination membrane prepared via organic-organic interfacial polymerization. Journal of Membrane Science, 2023, 672: 121444
https://doi.org/10.1016/j.memsci.2023.121444
92 J Xin , H Fan , B Guo , H Yang , C Zhu , C Zhang , Z Xu . Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chemical Communications, 2023, 59(59): 13258–13271
https://doi.org/10.1039/D3CC04171A
93 C Liu , J Yang , B Guo , S Agarwal , A Greiner , Z Xu . Interfacial polymerization at the alkane/ionic liquid interface. Angewandte Chemie International Edition, 2021, 60(26): 14636–14643
https://doi.org/10.1002/anie.202103555
94 Z Lei , B Chen , Y Koo , D R Macfarlane . Introduction: ionic liquids. Chemical Reviews, 2017, 117(10): 6633–6635
https://doi.org/10.1021/acs.chemrev.7b00246
95 K Ma , X Li , X Xia , Y Chen , Z Luan , H Chu , B Geng , M Yan . Fluorinated solvent resistant nanofiltration membrane prepared by alkane/ionic liquid interfacial polymerization with excellent solvent resistance. Journal of Membrane Science, 2023, 673: 121486
https://doi.org/10.1016/j.memsci.2023.121486
96 Y Wang , H Chang , S Jiang , J Chen , J Wang , H Liang , G Li , X Tang . An efficient co-solvent tailoring interfacial polymerization for nanofiltration: enhanced selectivity and mechanism. Journal of Membrane Science, 2023, 677: 121615
https://doi.org/10.1016/j.memsci.2023.121615
97 B Khorshidi , T Thundat , B A Fleck , M Sadrzadeh . Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances, 2015, 5(68): 54985–54997
https://doi.org/10.1039/C5RA08317F
98 X Song , B Gan , S Qi , H Guo , C Y Tang , Y Zhou , C Gao . Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environmental Science & Technology, 2020, 54(6): 3559–3569
https://doi.org/10.1021/acs.est.9b05892
99 J Yang , L Tao , J He , J R Mccutcheon , Y Li . Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Science Advances, 2022, 8(29): eabn9545
https://doi.org/10.1126/sciadv.abn9545
100 J Wang , K Tian , D Li , M Chen , X Feng , Y Zhang , Y Wang , B Van Der Bruggen . Machine learning in gas separation membrane developing: ready for prime time. Separation and Purification Technology, 2023, 313: 123493
https://doi.org/10.1016/j.seppur.2023.123493
101 J Wang , J Zhu , Y Zhang , J Liu , B Van Der Bruggen . Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957
https://doi.org/10.1039/C6NR08417F
102 X Song , J M Tueler , W Guiga , C Fargues , B Rousseau . Molecular simulation of a reverse osmosis polyamide membrane layer. In silico synthesis using different reactant concentration ratios. Journal of Membrane Science, 2021, 643: 120010
https://doi.org/10.1016/j.memsci.2021.120010
103 A Waheed , U Baig , I Abdulazeez , S W Hasan , I H Aljundi . Delineation of the diamine monomers effect on the desalination properties of polyamide thin film composite membranes: experimental and molecular dynamics simulation. Journal of Molecular Liquids, 2022, 363: 119778
https://doi.org/10.1016/j.molliq.2022.119778
104 H Yin , M Xu , Z Luo , X Bi , J Li , S Zhang , X Wang . Machine learning for membrane design and discovery. Green Energy & Environment, 2024, 9(1): 54–70
https://doi.org/10.1016/j.gee.2022.12.001
105 M Wang , G M Shi , D Zhao , X Liu , J Jiang . Machine learning-assisted design of thin-film composite membranes for solvent recovery. Environmental Science & Technology, 2023, 57(42): 15914–15924
https://doi.org/10.1021/acs.est.3c04773
106 H Deng , Z Luo , J Imbrogno , T M Swenson , Z Jiang , X Wang , S Zhang . Machine learning guided polyamide membrane with exceptional solute-solute selectivity and permeance. Environmental Science & Technology, 2023, 57(46): 17841–17850
https://doi.org/10.1021/acs.est.2c05571
107 Hamdani Y S Al , P R Nagy , A Zen , D Barton , M Kállay , J G Brandenburg , A Tkatchenko . Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12(1): 3927
https://doi.org/10.1038/s41467-021-24119-3
108 K Li , J D Kress , D S Mebane . The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents. Journal of Physical Chemistry C, 2016, 120(41): 23683–23691
https://doi.org/10.1021/acs.jpcc.6b08808
109 X Li , A Sotto , J Li , B Van Der Bruggen . Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 2017, 524: 502–528
https://doi.org/10.1016/j.memsci.2016.11.040
110 H Xu , S G Pate , C P O’Brien . Mathematical modeling of CO2 facilitated transport across polyvinylamine membranes with direct operando observation of amine carrier saturation. Chemical Engineering Journal, 2023, 460: 141728
https://doi.org/10.1016/j.cej.2023.141728
111 A Jomekian , R M Behbahani , T Mohammadi , A Kargari . High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(2): 440–453
https://doi.org/10.1007/s11814-016-0269-1
112 H C Yang , M B Wu , J Hou , S B Darling , Z K Xu . Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(7): 2908–2913
https://doi.org/10.1039/C7TA10438C
113 D J Jasim , T J Mohammed , H N Harharah , R H Harharah , A Amari , M F Abid . Modeling and optimal operating conditions of hollow fiber membrane for CO2/CH4 separation. Membranes, 2023, 13(6): 557
https://doi.org/10.3390/membranes13060557
114 C Yu , X Cen , D Ao , Z Qiao , C Zhong . Preparation of thin-film composite membranes with ultrahigh MOFs loading through polymer-template MOFs induction secondary interfacial polymerization. Applied Surface Science, 2022, 614: 156186
https://doi.org/10.1016/j.apsusc.2022.156186
115 Z Qiao , Z Wang , C Zhang , S Yuan , Y Zhu , J Wang , S Wang . PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228
https://doi.org/10.1002/aic.13781
116 X He , A Lindbråthen , T J Kim , M B Hägg . Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2017, 64: 323–332
https://doi.org/10.1016/j.ijggc.2017.08.007
[1] Xue Gu, Yu Qin, Jiahui Wei, Bing Yuan, Fengli Yu, Liantao Xin, Congxia Xie, Shitao Yu. Highly dispersed Pd nanoparticles in situ reduced and stabilized by nitrogen-alkali lignin-doped phenolic nanospheres and their application in vanillin hydrodeoxygenation[J]. Front. Chem. Sci. Eng., 2024, 18(11): 127-.
[2] Yu Zhang, Yulei Qian, Zhenye Tong, Su Yan, Xiaoyu Yong, Yang-Chun Yong, Jun Zhou. Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion[J]. Front. Chem. Sci. Eng., 2024, 18(10): 109-.
[3] Jie Chen, Mingyuan Jian, Deqiong Xie, Kecan Dou, Deli Chen, Weidong Zhu, Fumin Zhang. Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines[J]. Front. Chem. Sci. Eng., 2024, 18(1): 9-.
[4] Fan Zhang, Ce Gao, Shang-Ru Zhai, Qing-Da An. Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient catalytic degradation of organic dyes[J]. Front. Chem. Sci. Eng., 2023, 17(7): 893-905.
[5] Yong Zheng, Mingjin Li, Yongye Wang, Niu Huang, Wei Liu, Shan Chen, Xuepeng Ni, Kunming Li, Siwei Xiong, Yi Shen, Siliang Liu, Baolong Zhou, Niaz Ali Khan, Liqun Ye, Chao Zhang, Tianxi Liu. Floret-like Fe–Nx nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction[J]. Front. Chem. Sci. Eng., 2023, 17(5): 525-535.
[6] Bing Lu, Zhecheng Zhang, Meiyu Qi, Yuehua Zhang, Hualing Yang, Jin Wang, Yue Ding, Yang Wang, Yong Yao. All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen[J]. Front. Chem. Sci. Eng., 2023, 17(3): 307-313.
[7] Alexey Stepanov, Svetlana Fedorenko, Kirill Kholin, Irek Nizameev, Alexey Dovzhenko, Rustem Zairov, Tatiana Gerasimova, Alexandra Voloshina, Anna Lyubina, Guzel Sibgatullina, Dmitry Samigullin, Asiya Mustafina. Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2–xS cores with red emitting carbon dots[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2144-2155.
[8] Yi-Fan Xue, Jie Feng, Yun-Cai Song, Wen-Ying Li. Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study of active sites[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1986-2000.
[9] Jiafeng Ouyang, Wenlu Guo, Lin Wang, Changming Nie, Dadong Shao, Weiqun Shi, Liyong Yuan. Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2037-2049.
[10] Qing-Hui Kong, Xian-Wei Lv, Jin-Tao Ren, Hao-Yu Wang, Xin-Lian Song, Feng Xu, Zhong-Yong Yuan. “Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1755-1764.
[11] Gaohui Du, Yi Fan, Lina Jia, Yunting Wang, Yawen Hao, Wenqi Zhao, Qingmei Su, Bingshe Xu. Sulfur-deficient CoNi2S4 nanoparticles-anchored porous carbon nanofibers as bifunctional electrocatalyst for overall water splitting[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1707-1717.
[12] Joseph Raj Xavier. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix[J]. Front. Chem. Sci. Eng., 2023, 17(1): 1-14.
[13] Jinjian Hou, Jinze Du, Hong Sui, Lingyu Sun. A review on the application of nanofluids in enhanced oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1165-1197.
[14] Han Jia, Jiajun Dai, Tingyi Wang, Yingbiao Xu, Lingyu Zhang, Jianan Wang, Lin Song, Kaihe Lv, Dexin Liu, Pan Huang. The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1101-1113.
[15] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed