Electronic Supplementary Material

A 3D Porous WP₂ nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution

Mingyu Pi¹, Xiaodeng Wang¹, Dingke Zhang², Shuxia Wang¹, Shijian Chen (🖂)¹

1 College of Physics, Chongqing University, Chongqing 401331, China

2 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China

© Higher Education Press and Springer- Verlag GmbH Germany, part of Springer Nature 2018 E-mail: <u>sichen@cqu.edu.cn</u>

Fig. S1 (a) Photographs of bare CC, WO₃ NSs/CC and WP₂ NSs/CC; (b) Photograph of the fabricated flexible WP₂ NSs/CC electrode

Fig. S2 XRD patterns for WO3 and WP2 nanoparticles

Fig. S3 Low-magnification SEM images for (a) blank CC substrate, (b, c) WO3 NSs/CC and (d) WP2 NSs/CC

Fig. S4 SEM images of (a) WO_3 and (b) WP_2 nanoparticles

Fig. S5 EDX spectrum for $WP_2 NSs$

Fig. S6 XPS spectra in (a) P and (b) W regions for WP $_2$ NSs/CC

'	Table S1 Comparison	of HER perfor	rmance of in acidic	media of WP2	2 NSs/CC with	n other	non-noble	metal
(electrocatalsts (NWs: nanowires, NRs: nanorods, NSs: nanosheets, NPs: nanoparticles and SPs: submicron particles)							
		Current	Corresponding					

	Current	Corresponding		
Catalyst	density/	overpotential/	Reference	
	$(mA \cdot cm^{-2})$	mV		
WP ₂ NSs/CC	10	135	This work	
W ₂ C	10	~140	J. Mater. Chem. A, 2016, 4: 8204–8210	
WN NRs/CC	10	198	Electrochim. Acta., 2015, 154: 345-351	
WS_2	10	310	Chem. Commun., 2015, 51: 8334–8337	
WP ₂ NPs	10	143	Energy Technol., 2016, 4: 1030–1034	
WP ₂ SPs	10	201	Electrochim. Acta, 2016, 216: 304–311	
WP ₂ NRs	10	~200	Energy Environ. Sci., 2016, 9: 1468–1475	
WP ₂ SPs	10	161	ACS Catal., 2015, 5: 145–149	
WP ₂ NRs	10	148	J. Power Sources, 2015, 278: 540–545	
WP NRs/CC	10	130	ACS Appl. Mater. Interfaces, 2014, 6: 21874-	
			21879	
MoP ₂ NPs/Mo	10	143	Nanoscale, 2016, 8: 8500–8504	
MoP NSs/CF	10	200	Appl. Catal. B: Environ., 2015, 164: 144–150	
MoP/NC	10	~130	Electrochim. Acta., 2016, 199: 99–107	
MoP-CA2	10	125	Adv. Mater., 2014, 26: 5702–5707	
FeP ₂ /C	10	>500	J. Mater. Chem. A, 2015, 3: 499–503	
FeP NSs	10	>200	Chem. Commun., 2013, 49: 6656–6658	
Cu ₃ P NW/CF	10	143	Angew. Chem. Int. Ed., 2014, 53: 9577–9581	
CoP NPs	10	~150	~150 Electrochim. Acta., 2016, 199: 99–107	
CoP/CNT	10	122 Angew. Chem. Int. Ed., 2014, 53: 3710–6714		
Ni ₁₂ P5/NC	10	~230	Electrochim. Acta., 2016, 199: 99–107	

Fig. S7 (a) CVs for WP₂ NSs/CC and WP₂ NPs/CC in phosphate (pH=7) over a range of -0.2 to 0.6 V at a scan rate of 50 mV·s⁻¹ and (b) TOFs for WP₂ NSs/CC and WP₂ NPs/CC

The number of active sites (*n*) was examined via cyclic voltammograms in phosphate buffer (pH = 7) at a scan rate of 50 mV·s⁻¹ between -0.2 V and +0.6 V vs. RHE and *n* (mol) could be determined with the following equation:

$$n = Q/2F$$

Where Q (C) is the voltammetric charge, F is Faraday constant (96480 C·mol⁻¹). For WP₂ NSs/CC, Q is 3.39×10^{-2} C, *n* is 3.51×10^{-7} mol. For WP₂ NPs/CC, Q is 1.63×10^{-2} C, *n* is 1.68×10^{-7} mol. TOF (s⁻¹) could be calculated with the following equation:

$$TOF = I/2nF$$

Where I (A) was the current of the polarization curve obtained by LSV measurements.

Fig. S8 Calculated exchange current density for WP₂ NSs/CC and WP₂ NPs/CC in 0.5 mol·L⁻¹ H₂SO₄ by applying extrapolation method to the Tafel plot

Catalyst	Exchange current density/(mA·cm ⁻²)	Reference			
WP ₂ NSs/CC 0.16		This work			
MoS ₂ /FTO	6.9×10 ⁻⁴	Nat. Mater., 2012, 11: 963-969			
defect-rich MoS ₂	8.9×10 ⁻³	Adv. Mater., 2013, 25: 5807–5813			
MoO ₃ -MoS ₂ /FTO	8.2×10 ⁻⁵	Nano Lett., 2011, 11: 4168–4175			
bulk Mo ₂ C	1.3×10 ⁻³	Angew. Chem. Int. Ed., 2012, 51: 12703–12706			
bulk MoB	1.4×10 ⁻³	Angew. Chem. Int. Ed., 2012, 51: 12703-12706			
Co-NRCNTs	0.01	Angew. Chem. Int. Ed., 2014, 126: 4372-4376			
WS ₂ NSs	0.02	Nat. Mater., 2013, 12: 850–855			
CoSe ₂ NP/CP	(4.9±1.4) ×10 ⁻³	J. Am. Chem. Soc., 2014, 136: 4897–4900			
Ni ₂ P hollow NPs	0.033	J. Am. Chem. Soc., 2013, 135: 9267–9270			
Cu ₃ P NW/CF	0.18	Angew. Chem. Int. Ed., 2014, 53: 9577–9581			
FeP ₂ /C	1.75×10^{-3}	J. Mater. Chem. A, 2015, 3: 499–503			
CoP NWs/CC	0.288	J. Am. Chem. Soc., 2014, 136: 7587–7590			
CoP/CNT	0.13	Angew. Chem. Int. Ed., 2014, 53: 3710-6714			
WP NRs/CC	0.29	ACS Appl. Mater. Interfaces, 2014, 6: 21874–21879			
WP ₂ NPs	0.09	Energy Technol., 2016, 4: 1030–1034			
WP ₂ SPs	0.017	ACS Catal., 2015, 5: 145–149			
WP ₂ NRs	0.013	J. Power Sources, 2015, 278: 540–545			
bulk MoP	0.034	Energy Environ. Sci., 2014, 7: 2624–2629			
MoP-CA2	0.086	Adv. Mater., 2014, 26: 5702–5707			
MoP ₂ NS/CC	0.83	J. Mater. Chem. A, 2016, 4: 7169–7173			
MoP ₂ NPs/Mo	0.06	Nanoscale, 2016, 8: 8500–8504			

Table S2 Comparison of exchange current density of WP2 NSs/CC with other non-noble metal electrocatalsts (NWs:nanowires, NRs: nanorods, NSs: nanosheets, NPs: nanoparticles and SPs: submicron particles)

Fig. S9 XRD patterns before and after reaction for $WP_2 NSs/CC$

Fig. S10 SEM images for WP2 NSs/CC after the electrochemical tests

Fig. S11 Polarization curves for the WP₂ NSs/CC in (a) 1.0 M PBS (pH=7) and (c) 1.0 M KOH (pH=14); (b, d) Corresponding Tafel plots

Fig. S12 Digital photographs of operating WP_2 film and nanosheet (NS) array electrodes evolving H_2 . (a) For WP_2 film electrodes, large H_2 bubbles commonly pin at the electrode surface, as red arrows marked; (b) Due to the NS morphology, many small H_2 bubbles rapidly form at and escape from the WP_2 NS electrode surface

Fig. S13 SEM images for WP2 film catalyst

Fig. S14 Schematic depictions of the nanosheets structure of the catalyst can provide smooth hydrogen evolution channels, thus allowing fast removal of the H_2 bubbles from the electrode surface and avoid the peeling of the catalysts, which display a large structural advantage compared to the conventional electrode with drop coated catalyst

			-	
Catalyst	Energy barrier for transition state of hydrogen atom adsorption/eV	Bond length/Å	Reference	
WP ₂	0.92	1.45		
Pt	0.67 - This wo		This work	
MoP	1.05	1.42		
MoP ₂	0.93	1.44	J. Power Sources, 2016, 328: 55	
Pt	0.67	-		
MoS ₂ /CoSe ₂	1.13	-	Nat. Commun., 2015, 6: 5982	
Pt	0.69	-		
Co-FeS ₂ /CNT	1.23	1.365	J. Am. Chem. Soc., 2015, 137: 1587	
FeS ₂ /CNT	1.62	1.361		

Table S3 Comparison of energy barrier for hydrogen atom adsorption and bond length for WP_2 catalyst with the other catalysts