Electronic Supplementary Material

Effects of functional groups for CO₂ capture using metal organic frameworks

Chenkai Gu¹, Yang Liu², Weizhou Wang³, Jing Liu(⊠)¹, Jianbo Hu¹

1 State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA

3 Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China

E-mail: liujing27@mail.hust.edu.cn

List of Figures Captions

- **Fig. S1** Cluster used for calculating partial charges on MOF-177 atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- **Fig. S2** Cluster used for calculating partial charges on MOF-177-F atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- **Fig. S3** Cluster used for calculating partial charges on MOF-177-CH₃ atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- **Fig. S4** Cluster used for calculating partial charges on MOF-177-CN atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- **Fig. S5** Cluster used for calculating partial charges on MOF-177-OH atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- Fig. S6 Cluster used for calculating partial charges on MOF-177-NH₂ atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

- **Fig. S7** Cluster used for calculating partial charges on MOF-177-COOH atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- **Fig. S8** Cluster used for calculating partial charges on MOF-177-SO₃H atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.
- **Fig. S9** Comparisons between the CO₂ binding energy on organic linkers calculated by DFT and the CO₂ adsorption heat in periodic MOFs at infinite dilution.
- **Fig. S10** DFT optimized structures of the CO₂-linkers modified with –SO₃H (S, yellow spheres; O, red spheres; C, gray spheres and H, white spheres).
- **Fig. S11** DFT optimized structures of the CO₂-linkers modified with -COOH (O, red spheres; C, gray spheres and H, white spheres).
- **Fig. S12** DFT optimized structures of the CO₂-linkers modified with –NH₂ (O, red spheres; C, gray spheres; N, dark blue spheres and H, white spheres).
- Fig. S13 DFT optimized structures of the CO₂-linkers modified with -OH (O, red spheres; C, gray spheres and H, white spheres).
- Fig. S14 DFT optimized structures of the CO₂-linkers modified with -CN (O, red spheres; C, gray spheres; N, dark blue spheres and H, white spheres).
- **Fig. S15** DFT optimized structures of the CO₂-linkers modified with -CH₃ (O, red spheres; C, gray spheres and H, white spheres).
- **Fig. S16** DFT optimized structures of the CO₂-linkers modified with -F (O, red spheres; C, gray spheres; H, white spheres and F, cyan spheres).
- **Fig. S17** DFT optimized structures of the CO₂-linkers in MOF-177 (O, red spheres; C, gray spheres and H, white spheres).
- Fig. S18 DFT optimized structures of the CO₂-clusters in functionalized MOF-177 (Zn, light blue

spheres; O, red spheres; C, gray spheres and H, white spheres).

Fig. S1 Cluster used for calculating partial charges on MOF-177 atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C 8
Charge	1.137	-0.267	0.202	-0.267	-0.107	0.100	-0.107	0.505	-0.049
Atom	C9	\mathbf{H}_{1}	H ₂	H3	H_4	H5	O 1	O 2	
Charge	-0.096	0.125	0.154	0.125	0.110	0.154	-0.543	-1.524	

 Table S1 Atomic partial charge (e) for the MOF-177 structure

Fig. S2 Cluster used for calculating partial charges on MOF-177-F atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C 1	C ₂	Сз	C 4	C 5	C 6	C 7	C 8
Charge	1.120	0.269	-0.014	-0.188	-0.193	0.138	-0.299	0.569	0.047
Atom	C9	\mathbf{H}_{1}	H_2	H ₃	H_4	O 1	O ₂	F	
Charge	-0.178	0.169	0.163	0.156	0.130	-0.531	-1.554	-0.168	

 Table S2 Atomic partial charge (e) for the MOF-177-F structure

Fig. S3 Cluster used for calculating partial charges on MOF-177-CH₃ atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C1	C ₂	Сз	C 4	C5	C 6	C 7	C 8
Charge	1.155	0.549	-0.158	-0.152	-0.208	0.130	-0.347	0.647	0.086
Atom	C9	C 10	\mathbf{H}_{1}	H2	H3	H_4	H5	O 1	O 2
Charge	-0.220	-0.895	0.161	0.145	0.138	0.132	0.223	-0.548	-1.566

Table S3 Atomic partial charge (e) for the MOF-177-CH₃ structure

Fig. S4 Cluster used for calculating partial charges on MOF-177-CN atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C1	C ₂	Сз	C 4	C 5	C 6	C 7	C 8
Charge	1.174	0.012	0.058	-0.207	-0.145	0.157	-0.218	0.597	-0.004
Atom	C9	C 10	\mathbf{H}_{1}	H2	H3	H_4	O 1	O 2	Ν
Charge	-0.141	0.268	0.163	0.169	0.141	0.124	-0.557	-1.624	-0.372

Table S4 Atomic partial charge (e) for the MOF-177-CN structure

Fig. S5 Cluster used for calculating partial charges on MOF-177-OH atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C 1	C 2	Сз	C 4	C 5	C 6	C 7	C 8
Charge	1.129	0.384	-0.079	-0.179	-0.232	0.178	-0.371	0.614	0.054
Atom	C9	H_1	H ₂	H3	H4	H5	01	O 2	O 3
Charge	-0.191	0.166	0.164	0.143	0.137	0.420	-0.551	-1.594	-0.562

Table S5 Atomic partial charge (e) for the MOF-177-OH structure

Fig. S6 Cluster used for calculating partial charges on MOF-177-NH₂ atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C 1	C 2	Сз	C 4	C 5	C 6	C 7	C 8
Charge	1.142	0.435	-0.180	-0.173	-0.233	0.183	-0.392	0.695	0.043
Atom	C9	\mathbf{H}_{1}	H ₂	H3	H_4	H5	O 1	O 2	Ν
Charge	-0.200	0.165	0.161	0.131	0.133	0.357	-0.574	-1.583	-0.832

Table S6 Atomic partial charge (e) for the MOF-177-NH₂ structure

Fig. S7 Cluster used for calculating partial charges on MOF-177-COOH atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C ₁	C ₂	С3	C 4	C 5	C ₆	C ₇	C ₈
Charge	1.160	-0.068	0.034	-0.208	-0.131	0.150	-0.299	0.640	-0.007
Atom	C9	C10	\mathbf{H}_{1}	H ₂	H3	H_4	H5	O 1	O 2
Charge	-0.141	0.559	0.154	0.207	0.135	0.132	0.410	-0.560	-1.610
Atom	O 3	O 4							
Charge	-0.423	-0.529							

 Table S7 Atomic partial charge (e) for the MOF-177-COOH structure

Fig. S8 Cluster used for calculating partial charges on MOF-177-SO₃H atoms. The terminations of cluster were saturated with methyl groups to minimize the boundary effects.

Atom	Zn	C1	C ₂	Сз	C 4	C5	C 6	C 7	C 8
Charge	1.168	0.035	0.099	-0.229	-0.117	0.117	-0.153	0.557	-0.032
Atom	C9	${ m H}_1$	H_2	H ₃	H_4	H5	O 1	O ₂	O 3
Charge	-0.084	0.145	0.181	0.140	0.123	0.416	-0.536	-1.618	-0.338
Atom	O 4	S							
Charge	-0.443	0.484							

Table S8 Atomic partial charge (e) for the MOF-177-SO₃H structure

Fig. S9 Comparisons between the CO₂ binding energy on organic linkers calculated by DFT and the CO₂ adsorption heat in periodic MOFs at infinite dilution.

Fig. S10 DFT optimized structures of the CO₂-linkers modified with –SO₃H (S, yellow spheres; O, red spheres; C, gray spheres and H, white spheres).

Fig. S11 DFT optimized structures of the CO₂-linkers modified with -COOH (O, red spheres; C, gray spheres and H, white spheres).

Fig. S12 DFT optimized structures of the CO₂-linkers modified with –NH₂ (O, red spheres; C, gray spheres; N, dark blue spheres and H, white spheres).

Fig. S13 DFT optimized structures of the CO₂-linkers modified with -OH (O, red spheres; C, gray spheres and H, white spheres).

Fig. S14 DFT optimized structures of the CO₂-linkers modified with -CN (O, red spheres; C, gray spheres; N, dark blue spheres and H, white spheres).

Fig. S15 DFT optimized structures of the CO₂-linkers modified with –CH₃ (O, red spheres; C, gray spheres and H, white spheres).

Fig. S16 DFT optimized structures of the CO₂-linkers modified with -F (O, red spheres; C, gray spheres; H, white spheres and F, cyan spheres).

Fig. S17 DFT optimized structures of the CO₂-linkers in MOF-177 (O, red spheres; C, gray spheres and H, white spheres).

 $MOF-177-CH_3 \text{ BE}=-32.44 \text{kJ/mol}$

MOF-177-COOH BE= -30.84kJ/mol

MOF-177 BE= -29.44kJ/mol

 $MOF\text{-}177\text{-}NH_2 \ \text{BE}\text{=}\text{-}33.66 \text{kJ/mol}$

 $\textbf{MOF-177-F} \hspace{0.1in} BE=-29.07 kJ/mol$

MOF-177-SO₃H BE= -27.65kJ/mol

Fig. S18 DFT optimized structures of the CO₂-clusters in functionalized MOF-177 (Zn, light blue spheres; O, red spheres; C, gray spheres and H, white spheres).