Electronic Supplementary Material

Surface hydrophobicity: effect of alkyl chain length and network homogeneity

Wenqian Chen $(\boxtimes)^1$, Vikram Karde 1 , Thomas N. H. Cheng 1 , Siti S. Ramli 2 , Jerry Y. Y. Heng 1

- 1 Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- 2 Department of Food Technology, Faculty of Applied Sciences, University Technology MARA (UiTM), Shah Alam, Selangor, Malaysia

Table S1. Details of materials used in experiments.

Compound name	CAS number	Supplier	Product code	Note
Tetraethyl orthosilicate (TEOS)	78-10-4	Sigma Aldrich	131903-1L	Reagent grade, 98%
Trimethoxy(octyl)silane	3069-40-7	Sigma Aldrich	376221-25ML	96%
Triethoxymethylsilane	2031-67-6	Sigma Aldrich	175579-250G	99%
Ethanol	64-17-5	VWR	20821.33	≥99.8%, AnalaR NORMAPUR® ACS, Reag. Ph. Eur. analytical reagent
Acetone	67-64-1	VWR	20066.330	≥99.8%, AnalaR NORMAPUR® ACS, Reag. Ph. Eur. analytical reagent
Sodium hydroxide	1310-73-2	VWR	28244.295	98.5-100.5%, pellets, AnalaR NORMAPUR® Reag. Ph. Eur. analytical reagent
Cyclohexane	110-82-7	Fisher Chemical	C/8921/15	≥99.8% Analytical reagent grade

Figure S1. Tablet of pristine silica nanoparticle after instantly absorbing the water droplet.

Figure S2. Tablet of methyl-functionalised silica nanoparticle (triethoxymethylsilane : nanoparticle = $200 \ \mu L \cdot g^{-1}$) after instantly absorbing the water droplet.

Figure S3. Water droplet on tablet of functionalised silica nanoparticle (triethoxymethylsilane : trimethoxy(octyl)silane = 160 μ L : 40 μ L). The total silane to nanoparticle ratio was kept constant at 200 μ L · g⁻¹.

Figure S4. Water droplet on tablet of functionalised silica nanoparticle (triethoxymethylsilane : trimethoxy(octyl)silane = 140 μ L : 60 μ L). The total silane to nanoparticle ratio was kept constant at 200 μ L · g⁻¹.

Figure S5. Water droplet on tablet of functionalised silica nanoparticle (triethoxymethylsilane : trimethoxy(octyl)silane = $120~\mu L$: $80~\mu L$). The total silane to nanoparticle ratio was kept constant at $200~\mu L \cdot g^{-1}$.

Figure S6. Water droplet on tablet of functionalised silica nanoparticle (triethoxymethylsilane : trimethoxy(octyl)silane = $100~\mu L$: $100~\mu L$). The total silane to nanoparticle ratio was kept constant at $200~\mu L \cdot g^{-1}$.

Figure S7. Water droplet on tablet of functionalised silica nanoparticle (triethoxymethylsilane : trimethoxy(octyl)silane = $40~\mu L$: $160~\mu L$). The total silane to nanoparticle ratio was kept constant at $200~\mu L \cdot g^{-1}$.

Figure S8. Water droplet on the tablet of octyl-functionalised silica nanoparticle (trimethoxy(octyl)silane : nanoparticle = $200 \, \mu L \cdot g^{-1}$)