## **Electronic Supplementary Material**

## Nickel(II) ion-intercalated MXene membranes for enhanced $H_2/CO_2$ separation

Yiyi Fan<sup>1\*</sup>, Jinyong Li<sup>1\*</sup>, Saidi Wang<sup>1</sup>, Xiuxia Meng (⊠)<sup>1</sup>, Yun Jin<sup>1</sup>, Naitao Yang<sup>1</sup>, Bo Meng<sup>1</sup>, Jiaquan Li<sup>2</sup>, Shaomin Liu (⊠)<sup>2,3</sup>

1 School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China

2 Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia

3 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

E-mails: mengxiux@sdut.edu.cn (Meng X); shaomin.liu@curtin.edu.au (Liu S)



Fig. S1 (a) SEM image of MAX precursor. (b) SEM image of MXene powder. (c) TEM image of  $Ni^{2+}$ - $Ti_3C_2T_x$  nanosheets. (d) High-resolution TEM image of  $Ni^{2+}$ - $Ti_3C_2T_x$  nanosheets.



Fig. S2 SEM image and the corresponding element distribution mappings of one typical  $Ni^{2+}$ -Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene powder.



Fig. S3 (a) TEM image of  $Ti_3C_2Tx$  nanosheets. (b) Cross-sectional SEM image of the  $Ti_3C_2T_x$  membrane. (c) The surface of  $Ti_3C_2T_x$  membrane.



Fig. S4 the XRD pattern of the  $Ni^{2+}$ - $Ti_3C_2T_x$  membrane.



Fig. S5 TEM image and the corresponding element distribution mappings of the  $Ni^{2+}$ -Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> membrane.

| membrane material                                                                  | thickness / µ<br>m | Temperature<br>/℃ | Permeable<br>10 <sup>-10</sup> molm <sup>-2</sup> s <sup>-1</sup> Pa <sup>-1</sup> | selectivity | ref          |
|------------------------------------------------------------------------------------|--------------------|-------------------|------------------------------------------------------------------------------------|-------------|--------------|
| MXene/AAO                                                                          | 0.02               | 25                | 5322.4                                                                             | 27          | [1]          |
| MXene/AAO                                                                          | 2                  | 25                | 7370                                                                               | 166.6       | [2]          |
| EFDA/GO                                                                            | 1                  | 25                | 2814                                                                               | 30          | [3]          |
| $Zn_2(bim)_4/\alpha$ -Al <sub>2</sub> O <sub>3</sub>                               |                    | 120               | 7638                                                                               | 230         | [4]          |
| MAMS-1/AAO                                                                         | 0.04               | 25                | 1852.5                                                                             | 235         | [5]          |
| UiO-66-NH <sub>2</sub> /GO                                                         | 1.9                | 25                | 390                                                                                | 6.35        | [6]          |
| GO/AAO                                                                             | 0.02               | 25                | 3400                                                                               | 240         | [7]          |
| MFI zeolite/Al <sub>2</sub> O <sub>3</sub>                                         | 2                  | 500               | 100                                                                                | 46.5        | [8]          |
| ZIF-8/GO                                                                           | 0.07               | 25                | 670                                                                                | 4.6         | [9]          |
| ZIF-8                                                                              | 0.2                | 25                | 20500                                                                              | 12.8        | [10]         |
| ZIF-8/GO                                                                           | 20                 | 250               | 26000                                                                              | 15          | [11]         |
| Silicon carbide                                                                    | 2                  | 200               | 117.88                                                                             | 50          | [12]         |
| ZIF-7                                                                              | 2                  | 220               | 909.86                                                                             | 13.6        | [13]         |
| GO                                                                                 | 0.009              | 20                | 10.38                                                                              | 3400        | [14]         |
| ZIF-8                                                                              | 6                  | 25                | 1071                                                                               | 7.1         | [15]         |
| MOFs                                                                               | 0.16               | 30                | 140                                                                                | 7.5         | [16]         |
| $MoS_2$                                                                            | 0.06               | 35                | 491.8                                                                              | 4.4         | [17]         |
| Ni <sup>2+</sup> -Ti <sub>3</sub> C <sub>2</sub> Tx/Al <sub>2</sub> O <sub>3</sub> | 2.7                | 25                | 835                                                                                | 615         | This<br>work |

Supplementary Table S1 Detailed test conditions of the data points shown in main text Fig. 7(d).

## **Supplementary References**

1. Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, Zhang M, Liu G, Xiong J, Yang J, et al. 2D MXene Nanofilms with Tunable Gas Transport Channels. Advanced Functional Materials, 2018, 28(31): 1801511-1801523

2. Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155-161

3. Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. ACS Nano, 2016, 10(3): 3398-3409

4. Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356-1359

5. Wang X, Chi C, Zhang K, Qian Y, Gupta K M, Kang Z, Jiang J, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460-14469

6. Jia M, Feng Y, Liu S, Qiu J, Yao J. Graphene oxide gas separation membranes intercalated by UiO-66-NH<sub>2</sub> with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539: 172-177

7. Chi C, Wang X, Peng Y, Qian Y, Hu Z, Dong J, Zhao D. Facile Preparation of Graphene Oxide Membranes for Gas Separation. Chemistry of Materials, 2016, 28(9): 2921-2927

8. Hong Z, Sun F, Chen D, Zhang C, Gu X, Xu N. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. International Journal of Hydrogen Energy, 2013, 38(20): 8409-8414

9. Wang X, Chi C, Tao J, Peng Y, Ying S, Qian Y, Dong J, Hu Z, Gu Y, Zhao D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chemical Communications, 2016, 52(52): 8087-8090

10. Shamsaei E, Low Z-X, Lin X, Mayahi A, Liu H, Zhang X, Zhe Liu J, Wang H. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chemical Communications, 2015, 51(57): 11474-11477

11. Huang A, Liu Q, Wang N, Zhu Y, Caro J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Journal of the American Chemical Society, 2014, 136(42): 14686-14689

12. Elyassi B, Sahimi M, Tsotsis T T. Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288(1-2): 290-297

13. Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48-54

14. Hang Li Z S, Xiaojie Zhang, Yi Huang, Shiguang Li, Yating Mao, Harry J. Ploehn, Yu Bao, Miao Yu. Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science, 2013, 342: 95-98

15. Xu G, Yao J, Wang K, He L, Webley P A, Chen C-s, Wang H. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386: 187-193

16. Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly Enhanced Separation using ZIF-8 Membranes by Partial Conversion of Calcined Layered Double Hydroxide Precursors. ChemSusChem, 2015, 8(21): 3582-3586

17. Wang D, Wang Z, Wang L, Hu L, Jin J. Ultrathin membranes of single-layered  $MoS_2$  nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7(42): 17649-17652