Electronic Supplementary Material

High-performance supercapacitors based on Ni₂P@CNT nanocomposites prepared using an ultrafast microwave approach

Yunrui Tian¹, Haishun Du², Shatila, Sarwar², Wenjie Dong¹, Yayun Zheng¹, Shumin Wang¹, Qingping Guo¹, Jujie Luo (⊠)¹, Xinyu Zhang (⊠)²

1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2 Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

E-mails: luojujie@126.com (Luo J); xzz0004@auburn.edu (Zhang X)

Fig. S1. a) Low- and b) high-resolution HRTEM images of the Ni₂P@CNT. The inset of (b) is the corresponding SAED pattern.

Fig. S2. a) Nitrogen adsorption-desorption isotherm of sample, b) pore size distribution of sample

Fig. S3. Cycling performances of the ASCs

Fig. S4. The Ni₂P@CNT nanocomposites comparison of GCD curves before and after cyclic test at 1A g⁻¹.

Fig. S5. (a) GCD curves of $Ni_2P@CNT$ electrode materials with different preparation conditions at a current density of 10 A g^{-1} ; (b) Nyquist $Ni_2P@CNT$ electrode materials with different preparation conditions; (c) CV curves of $Ni_2P@CNT$ electrode materials with different preparation conditions at a scan rate of 50 mV s⁻¹.

Fig. S6. Comparison of FT-IR spectra of Ni₂P@CNT and CNT

Fig. S7. (a) CV curves of AC electrode materials with different scan rate; (b) GCD curves of AC electrode materials with different current density; (c) Nyquist curves of AC electrode materials.

 Characterization
 Atomic %(Ni)
 Atomic %(C)
 Atomic %(P)
 Atomic %(O)

 XPS
 7.68
 75.89
 8.26
 8.17

 EDS
 3.5
 88.7
 4.7
 3.1

Table S1. The percentage of elements in a sample