Electronic Supplementary Material

Pyrolysis transformation of ZIF-8 wrapped with polytriazine to nitrogen enriched core-shell polyhedrons carbon for supercapacitor

Nuoya Wang¹, Xinhua Huang (🖂)¹, Lei Zhang¹, Jinsong Hu², Yimin Chao³, Ruikun Zhao(🖂)⁴

1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

2 School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China

3 School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

4 College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE

E-mail: xhhuang@aust.edu.cn, ruikun.zhao@ku.ac.ae

Fig. S1 (a), (c) and (f) were GCD curves of ZIF-8@C/N-1, ZIF-8@C/N-2, and ZIF-8@C/N-3 at different current densities, respectively; (b), (d), and (f) were CV curves of ZIF-8@C/N-1, ZIF-8@C/N-2, and ZIF-8@C/N-3 at different scan rates, respectively

Fig. S2 Ragen plots of ZIF-8@C/N-x

Samples			THE ROCAL 2	
Current (A g ⁻¹)	ZIF-8@C/N-1	ZIF-8@C/N-2	ZIF-8@C/N-5	
0.5	249.216 F g ⁻¹	386.824 F g ⁻¹	300.818 F g ⁻¹	
1	218.3968 F g ⁻¹	341.6208 F g ⁻¹	284.0092 F g ⁻¹	
2	195.9616 F g ⁻¹	291.1952 F g ⁻¹	246.396 F g ⁻¹	
5	169.872 F g ⁻¹	256.468 F g ⁻¹	220.33 F g ⁻¹	
10	156.644 F g ⁻¹	231.992 F g ⁻¹	204.512 F g ⁻¹	

Table S1 Specific capacitance of ZIF-8@C/N-x at different current densities

Fig. S3 High-resolution XPS spectra of C1s the ZIF-8@C/N-x samples.

Fig. S4 High-resolution XPS spectra of O1s the ZIF-8@C/N-x samples

Materials	Current density	Electrolyte	C ^{a)} /F g ⁻¹	E^{b} /Wh kg ⁻¹	P^{c} /W kg ⁻¹	References			
	/A g ⁻¹								
ZIF-8@C/N-x	0.5	6 M KOH	386.8	13.4	250	This work			
			211	11.0	600	C 4			
NC-HAP-700	1	1 M H ₂ SO ₄	311	11.9	600	84			
C/II 2 0	1	6 M KOH	122	12	500	85			
C/0-2.0	1	0 M KOH	125	4.3	500	35			
NNCN-800	1	6 М КОН	316.8	10.56	500	S 6			
	-	0.1111011	01010	10100	200	20			
NPHC	0.5	6 M KOH	212	10.61	400	S7			
CS-HPGC	0.5	6 M KOH	332	10.2	100	S 8			
NPCs	1	6 M KOH	341	9.6	350.15	S9			
HPC-2	1	2 M KOH	171	4.2	250	S10			
N VDC HDCD	0.5		246	11.64	250	C 1 1			
N-YDS-HPCDs	0.5	2 M KOH	346	11.64	250	811			

Tabl	e S2	Com	parison	of e	lectroc	hemic	al per	formance:	present	t wor	k vs.	literatu	ires
------	------	-----	---------	------	---------	-------	--------	-----------	---------	-------	-------	----------	------

a) C: specific capacitance; b) E: Energy density; c) P: Power density

Fig. S5 (a) (b) SEM images of ZIF-8 derived carbon materials prepared under the same conditions; (c) GCD curves of ZIF-8 derived carbon materials at different current densities and (d) CV curves at different scan rates; (e) specific capacitances of the as-prepared samples at different current densities and Ragone plot (energy density vs. power density); (f) EIS of the as-prepared samples at the open circuit potential in the frequency range from 0.1 to 10^5 Hz.

References

- S1 Feng L X, Wang K , Zhang X , Sun X Z, Li C, Ge X B, Ma Y W. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Advanced Functional Materials, 2018, 28(4):1704463.1-1704463.9
- S2 Bacal M, Perrière, J, Tanguy M, Vesselovzorov A N, Maslakov K I, Dementjev A P. Study of carbon nitride films deposited using a Hall-type ion source. Journal of Physics D Applied Physics, 2000, 33(19):2373-2378
- S3 Yan L J, Li D, Yan T T, Chen G R, Shi L Y, An Z X, Zhang D S. Confining Redox Electrolytes in Functionalized Porous Carbon with Improved Energy Density for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10(49): 42494-42502

- S4 Chu M Z, Zhai Y Y, Shang N Z, Guo P J, Wang C, Gao Y J. N-doped carbon derived from the monomer of chitin for high-performance supercapacitor. Applied Surface Science, 2020, 517: 146140
- S5 Liu H, Zhai D D, Wang M, Liu J S, Chen X Y, Zhang Z J. Urea-modified phenol-formaldehyde resins for the template-assisted synthesis of nitrogen-doped carbon nanosheets as electrode material for supercapacitors. Chemelectrochem, 2019, 6(3): 885-891
- S6 Guo W, Zhou Y S, Pang L, Chen Z, Dong Y H, Bi J J, Ming S J, Li T. One-Step Pyrolysis to Synthesize Non-Graphitic Nitrogen-Doped 2D Ultrathin Carbon Nanosheets and Their Application in Supercapacitors. ChemElectroChem, 2019, 6(10): 2689-2697
- S7 Zhang Y, Sun Q, Xia K S, Han B, Zhou C G, Gao Q, Wang H Q, Pu S, Wu J P. Facile synthesis of hierarchically porous N/P codoped carbon with simultaneously high-level heteroatom-doping and moderate porosity for high-performance supercapacitor electrodes. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5717-5726
- S8 Gong Y N, Li D L, Fu Q, Zhang Y P, Pan C X. Nitrogen self-doped porous carbon for high-performance supercapacitors. ACS Applied Energy Materials, 2020, 3(2): 1585-1592
- S9 Yu J, Fu N, Zhao J, Liu R, Li F, Du Y C, Yang Z L. High specific capacitance electrode material for supercapacitors based on resin-derived nitrogen-doped porous carbons. ACS Omega, 2019, 4(14): 15904-15911
- S10 Zhang H S, Xiao W, Zhou W J, Chen S Y, Zhang Y H. Hierarchical porous carbon derived from sichuan pepper for high-performance symmetric supercapacitor with decent rate capability and cycling stability. Nanomaterials, 2019, 9(4): 553
- S11 Zhang J C, Liu L H, Qian G , Zhou Z J, Xiao K S, Cheng S, Wang Y, Liu Y F, Feng Y. Multi-layered zeolitic imidazolate framework based self-templated synthesis of nitrogen-doped hollow porous carbon dodecahedrons as robust substrates for supercapacitors. New Journal of Chemistry, 2019, 43(5): 2171-2178