Electronic Supplementary Material

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu¹, Jiehao Fu¹, Shanshan Chen², Jun Li³, Qianguang Yang¹, Jie Gao¹, Hua Tang¹, Zhipeng Kan¹, Tainan Duan¹, Shirong Lu (\boxtimes)¹, Kuan Sun (\boxtimes)², Zeyun Xiao (\boxtimes)¹

 Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, China
 MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
 Likeway & Information Control Arkei University of Einenee and Economics Densky 222020, China

3 Library & Information Center, Anhui University of Finance and Economics, Bengbu 233030, China

E-mails: lushirong@cigit.ac.cn (Lu S); kuan.sun@cqu.edu.cn (Sun K); xiao.z@cigit.ac.cn (Xiao Z)

Experimental Section

1. Materials

All reagents and solvents, unless otherwise specified, were purchased from Energy Chemical, Tansoole, Suna Tech, Aldrich and JiangSu GE-Chem Biotech. Ltd, and were used without further purification. PCE13 and IT-4Fwere purchased from Solarmer Energy Inc, P3HT and $PC_{61}BM$ were purchased from Luminescence Technology Corp, P1-P5 were purchased from Xi'an Ruixi Biological Technology Co. Ltd.

2. Thin film Characterizations

i. Ultraviolet–visible light (UV-vis) absorbance spectra were recorded on a Perkin Eimer Lambda 365 spectrophotometer. Contact angle was measured by DSA-100 (KRUSS Germany). GPC curves were obtained on OMNISEC.

ii. Thermogravimetric analysis (**TGA**) was carried out on a METTLER TOLEDO TGA/DSC 1 thermo gravimetric analyzer with thermal balance under protection of nitrogen at a heating rate of 10 °C min⁻¹, and differential scanning calorimetry (**DSC**) experiments

were performed on a METTLER TOLEDO DSC 1 differential scanning calorimeter with thermal balance under protection of nitrogen at a heating rate of 20 °C/min⁻¹. The work function of films were tested via ultraviolet photo emission spectroscopy (**UPS**) based on ESCAL ab 250Xi.

iii. Topographic images of the films were obtained from a Bruker atomic force microscopy (**AFM**) with the type of dimension edge with Scan AsystTM in the tapping mode using an etched silicon cantilever at a nominal load of ~2nN, and the scanning rate for a 2 μ m×2 μ m image size was 1.5 Hz. The thickness of P1-P5 films are also tested via AFM. C-AFM images were obtained with bias voltage from -10 V~10 V.

iv. Transmission electron microscope (TEM) studies were conducted with a TalosF200S electron microscopy to investigate the phase distribution of the active layer.

v. Grazing-Incidence wide-angle X-ray scattering (GIWAXS) measurements were carried out at 5A beamline of the Pohang Light Source II (PLS-II) in South Korea. The GIWAXS images were recorded at 0.13 incidence angle with X-rays of 11.57 keV (λ =1.0716Å) and MAR345 image plate detector.

3. ZnO preparation

The ZnO precursor was prepared by dissolving zinc acetate dihydrate $(Zn(CH_3COO)_2 \cdot 2H_2O, Aldrich, 99.9\%, 1 g)$ and ethanolamine $(NH_2CH_2CH_2OH, Aldrich, 99.5\%, 0.28 g)$ in 2-methoxyethanol (CH₃OCH₂CH₂OH, Aldrich, 99.8\%, 10 mL) under vigorous stirring for 12 h for the hydrolysis reaction in air. The ZnO precursor solution was spin-cast on top of the ITO-glass substrate. The films were annealed at 200 ° C for 15 min in air.

4. The electron conductivity (EC) measurements

The longitudinal and horizontal EC was tested through sandwich structure, longitudinal EC based on structure of ITO/CIL/Ag, horizontal EC based on structure of Glass substrate/CIL/Ag, CIL including ZnO and five polymers (P1-P5), corresponding formula: GEC=L/RS, R is the resistance of P1-P5, S is the cross sectional area of electrodes measured, L is the length between electrodes measured.

5. Current-density (*J-V*) and external quantum efficiency (*EQE*) measurements.

The *J-V* of unencapsulated photovoltaic devices were measured under air using a Keithley 2400 source meter. A 300 W xenon arc solar simulator (Oriel) with an AM 1.5 global filter operated at 100 mW/cm² was used to simulate the AM 1.5G solar irradiation. The illumination intensity was corrected by using a silicon photodiode with a protective KG5 filter calibrated by the National Renewable Energy Laboratory (NREL). The EQE was performed using certified IPCE equipment (Zolix Instruments, Inc, Solar Cell Scan 100).

Supporting Figures

Supplementary Figure S1¹H NMR spectra of P1-P5.

Supplementary Figure S2 (a)~(c) GPC diagrams of P2-P4, the upper diagrams in each of the figure are the GPC of PS block, the lower ones are the GPC of PS-*b*-P2VP.

Supplementary Figure S3 (a)~(e) SEM images of the P1-P5 polymers.

Supplementary Figure S4 (a)~(c) TEM images of the P2-P4 polymers.

Supplementary Figure S5 (a)~(e) GIWAXS of the P1-P5 thin films on silicon wafer via spin-coating. (f) In-plane diffraction patterns of P1-P5 thin films .

Supplementary Figure S6 (a) and **(c)** HADDF images of the P2 and P4 block copolymers. **(b)** and **(d)** EDS mapping (TEM mode) of the N components of the P2 and P4 block copolymers.

Supplementary Figure S7 (a)~(c) Bias-current curves of P1, P3 and P5 cathode interlayers via the measurement of C-AFM.

Supplementary Figure S8 (a) Sandwich structure to measure horizontal electron conductivity.(b) Current-voltage curves of the five polymer materials (P1-P5).

Supplementary Figure S9 *J-V* curves of (a) P3HT:PC₆₁BM and (b) PCE13:IT-4F based organic solar cells with P1, P2, P4, P5 cathode interlayers.

Supplementary Figure S10 *EQE* curves of (a) P3HT:PC₆₁BM and (b) PCE13:IT-4F based organic solar cells with P1, P2, P4, P5 cathode interlayers.

Supplementary Figure S11 Dark current density (*J-V*) curves of (a) P3HT:PC₆₁BM and (b) PCE13:IT-4F based organic solar cells w/o, with ZnO and P3 cathode interlayer.

Supplementary Figure S12 (a) and **(b)** The chemical structure of P3HT, PC₆₁BM, PCE13 and IT-4F.

Supplementary Figure S13 (a) Transmittance curves of substrate, ZnO, P3 covered substrate.(b) UPS of ZnO cathode interlayer.

Supplementary Figure S14 Absorption curves of (a) P3HT:PC₆₁BM and (b) PCE13:IT-4F based organic solar cells w/o, with ZnO or P3 cathode interlayer.

Supplementary Figure S15 Voltage (V_{oc}) of PCE13:IT-4F-based OSCs in ambient atmosphere with humidity of 70% using with (a) P3 cathode interlayer and (b) ZnO cathode interlayer. Current density (J_{sc}) of PCE13:IT-4F-based OSCs in ambient atmosphere with humidity of

70% using with (c) P3 cathode interlayer and (d) ZnO cathode interlayer. Fill factor (*FF*) of PCE13:IT-4F-based OSCs in ambient atmosphere with humidity of 70% using with (e) P3 cathode interlayer and (f) ZnO cathode interlayer.

Supplementary Figure S16 (a) Thermo-gravimetric analysis and **(b)** Differential scanning calorimetry of P3 polymer.

Supporting Tables

Supplementary Table S1. Analysis data of the two-dimensional GIWAXS results in

Film	Lattice plane	Peak location (A ⁻¹)		d-spacing (Å)		FWHM (A ⁻¹)		Coherence length (Å)	
		$q_{ m xy}$	$q_{ m z}$	$q_{ m xy}$	$q_{ m z}$	$q_{ m xy}$	$q_{ m z}$	$q_{ m xy}$	q_{z}
P1	010	1.382	1.368	4.548	4.593	0.557	0.486	10.221	11.722
P2	010	1.404	1.363	4.477	4.611	0.609	0.578	9.360	9.852
P3	010	1.374	1.373	4.571	4.577	0.499	0.389	11.409	14.646
P4	010	1.366	1.345	4.601	4.672	0.507	0.511	11.230	11.152
P5	010	1.434	1.360	4.383	4.619	0.540	0.588	10.556	10.204

out-of-plane direction (OOP).

Supplementary Table S2. Analysis data of the two-dimensional GIWAXS results in

out-of-plane direction (IP).

Film	Lattice plane	Peak location (A ⁻¹)	d-spacing (Å)	FWHM (A ⁻¹)	Coherence length (Å)	
	Lattice plane	$q_{ m xy}$	q_{xy}	$q_{ m xy}$	$q_{ m xy}$	
P1	100	0.684	9.189	0.384	14.747	
P2	100	0.801	7.840	0.375	15.133	
P3	100	0.750	8.377	0.309	18.325	
P4	100	0.707	8.887	0.450	12.601	
P5	100	0.827	7.593	0.536	10.575	

Supplementary	Table	S3.	Photovoltaic	performance	of	P3HT:PC ₆₁ BM	and
PCE13:IT-4F-base	ed organic	e solar	cells with P1, P2	2, P4, P5 cathod	e inte	rlayer.	

Material	CIL	<i>V_{oc}</i> [V]	J _{SC} [mA/cm ²]	FF [%]	PCE Max [%]	^{a)} Ave. PCE (%)	J _{SC} ^{b)} [mA/cm ²]	$Rs (\Omega \text{ cm}^2)$	$Rsh~(\Omega~{ m cm^2})$
	P1	0.54(±0.01)	9.61(±0.3)	47.5(±0.4)	2.44	2.27(±0.17)	8.50	15.87	6.38×10 ⁴
DUIT DC DM	P2	0.58(±0.01)	9.74(±0.4)	39.0(±0.8)	2.19	2.01(±0.18)	8.49	18.59	1.26×10 ⁴
P3H1:PC ₆₁ BM	P4	0.54(±0.01)	10.09(±0.3)	51.4(±0.7)	2.77	2.59(±0.18)	8.58	16.74	3.90×10 ⁵
	Р5	0.51(±0.01)	9.58(±0.3)	48.5(±0.5)	2.35	2.13(±0.23)	8.37	16.82	5.91×10 ⁴
	P1	0.82(±0.01)	19.19(±0.4)	62.65(±0.7)	9.83	9.68(±0.15)	18.29	3.70	1.87×10 ⁴
	P2	0.82(±0.01)	19.23(±0.4)	65.09(±0.6)	10.18	10.02(±0.16)	18.48	2.84	2.53×10 ⁴
PCE13:IT-4F	P4	0.82(±0.01)	18.87(±0.2)	69.96(±1.0)	10.79	10.33(±0.46)	18.07	1.46	3.18×10 ⁴
	P5	0.83(±0.02)	18.19(±0.2)	67.04(±0.8)	10.09	9.39(±0.70)	17.23	2.05	2.86×10 ⁴