Electronic Supplementary Material

Efficient removal of Cr(VI) and Pb(II) from aqueous

solution by magnetic nitrogen-doped carbon

Wanyue Liu^{1,*}, Xiaoqin Liu^{1,*}, Jinming Chang^{1,2}, Feng Jiang¹, Shishi Pang¹,

Hejun Gao (🖂)^{1,2}, Yunwen Liao (🖂)¹, Sheng Yu¹

1 College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China

2 Institute of Applied Chemistry, China West Normal University, Nanchong 637000,China

E-mails: hejun_gao@126.com (Gao H); liao-yw@163.com (Liao Y)

		$q_t = (C_0 - C_t) V/m$
		$q_e = (C_0 - C_e)V/m$
		<i>Removal</i> (%)=(C_0 - C_t)×100/ C_0
Kinetic model	Pseudo-first-order	$ln[(q_e-q_t)/q_e]=-k_1t$
	Pseudo-second-order	$t/q_t = 1/(k_2 q_e^2) + t/q_e$
	Elovich	$q_t = (1/\beta) ln(\alpha\beta) + (1/\beta) lnt$
	Liquid-film	$ln(1-q_{t/}q_{e})=-k_{lf}t$
	Intraparticle diffusion	$q_t = k_d t^{1/2} + C$
Isotherm model	Langmuir	$q_e = q_m K_L C_e / (1 + k_L C_e)$
		$R_L = 1/(1+K_LC_e)$
	Freundlich	$q_e = K_F C_e^{1/n}$

Table S1

 q_t is adsorption capacity of time t, C_0 is the initial concentration of adsorbates, C_t (mg/L) is the concentrations of adsorbates at the time t. C_e (mg L⁻¹) is the

concentrations of adsorbates at adsorption equilibrium. V (L) is the volume of the solution, and m (g) is the mass of the dry adsorbent. k_1 and k_2 are pseudo-first-order and pseudo-second-order adsorption rate constants, respectively. α is initial adsorption rate constant and β is desorption rate constant. k_{lf} is the liquid film diffusion rate constant. k_d is intraparticle diffusion constant and C is the intercept. q_m is the maximum adsorption capacity, K_L is Langmuir constant, R_L is the separation factor. K_f and n are Freundlich constants.

Fig. S1 Magnetic hysteresis loop of MNC.

Fig. S2 The influence of different molar ratios of FeSO₄ 7H₂O and Co(NO₃)₂ 6H₂O on the adsorption performance of pollutants.

The different ratios of Fe:Co MNC were prepared by the same method (Fe:Co(7:3)). The ratio of FeSO₄ 7H₂O and Co(NO₃)₂ 6H₂O was changed from 1:2 to 7:3 or only Fe. The different preparation methods of MNC without Co(NO₃)₂ 6H₂O was as follows: Fe nanoparticles were added to PPy particles, mixed uniformly by ball milling, and directly calcined. In this work, the composite Fe/Co MNC had better adsorption performance for pollutants than the only Fe-based material. When Fe:Co was close to 7:3, the ratio of FeSO₄ 7H₂O and Co(NO₃)₂ 6H₂O had little effect on the adsorption performance.

Fig. S3 Effect of the dosage on the adsorption process. (Adsorption equilibrium time =2 h, The initial $C_{Cr(VI)}=20 \text{ mg } L^{-1}$ (a), $C_{Pb(II)}=20 \text{ mg } L^{-1}$ (b).)

Fig. S4 Kinetic model of MNC and NC in Cr(VI) solution.

Fig. S5 Kinetic model of MNC and NC in Pb(II) solutions.

Fig. S6 Intraparticle diffusion model of MNC and NC in solutions.

Fig. S7 The Effect of coexisting ions on the adsorption of MNC.

Fig. S8 Adsorption and recycling of Cr(VI) and Pb(II) in aqueous solutions by MNC .