Electronic Supplementary Material

Unravelling the bottleneck of phosphonic acid anchoring groups aiming towards enhancing the stability and efficiency of mesoscopic solar cells

Ajendra Kumar Vats¹, Pritha Roy¹, Linjun Tang¹, Shuzi Hayase², Shyam S. Pandey (🖂)¹

1 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan

2 i-Powered Energy System Research Center (i-PERC), The University of Electro-Communications, Tokyo 182-8585, Japan

E-mail: shyam@life.kyutech.ac.jp

Electrochemical characterization

Figure. S1. Cyclic voltammogram of unsymmetrical squaraine dyes and ferrocene (2 mM) in DMF using 200 mM of Tetrabutylammoniumhexaflourophosphate as electrolyte recorded at 20 mV/s. In every case, Pt foil, Pt wire, and saturated calomel electrode (SCE) were used as a counter, working, and reference electrodes, respectively.

Dye adsorption behavior on thin films of mesoporous TiO₂

Figure S2. Electronic absorption spectra of unsymmetrical squaraine dyes adsorbed on the thin films of mesoporous TiO_2 (4 mm) measured after their adsorption for different times until saturation. In case, a dye solution of 0.1 mM in ethanol was used for the time-dependent dye adsorption studies at room temperature.

FTIR spectra for the binding mode of SQ-162 on TiO₂

Figure S3 Fourier Transform Infrared spectra for the dye SQ-162: Free dye $\{A\}$ and after its binding with TiO₂ $\{B\}$.

Synthetic Scheme-2

FAB-MS of the intermediate (2)

FAB-MS & HR FAB-MS of the intermediate (9)

FAB-MS & HR FAB-MS of the intermediate (10)

FAB-MS & HR FAB-MS of the intermediate (16)

FAB-MS & HR FAB-MS of the intermediate (18)

FAB-MS & HR FAB-MS of the intermediate (20)

FAB-MS & HR FAB-MS of the intermediate (22)

LALDI TOFMS of the intermediate (24)

FAB-MS & HR FAB-MS of the intermediate (25)

FAB-MS & HR FAB-MS of the Squaraine dye SQ-139

FAB-MS & HR FAB-MS of the Squaraine dye SQ-140

FAB-MS & HR FAB-MS of the Squaraine dye SQ-143

FAB-MS & HR FAB-MS of the Squaraine dye SQ-148

FAB-MS & HR FAB-MS of the Squaraine dye SQ-151

FAB-MS & HR FAB-MS of the Squaraine dye SQ-157

FAB-MS & HR FAB-MS of the Squaraine dye SQ-162

Proton NMR of the Squaraine dye SQ-139

Proton NMR of the Squaraine dye SQ-140

Proton NMR of the Squaraine dye SQ-148

Proton NMR of the Squaraine dye SQ-151

Proton NMR of the Squaraine dye SQ-157