Electronic Supplementary Material

Optimising the oil phases of aluminium hydrogel-stabilised emulsions

for stable, safe and efficient vaccine adjuvant

Lili Yuan¹, Xiaodong Gao (🖂)¹, Yufei Xia (🖂)^{2, 3, 4}

1 Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology, Jiangnan University, Wuxi 214122, China

2 State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China

E-mails: xdgao@jiangnan.edu.cn (Gao X); yfxia@ipe.ac.cn (Xiao Y)

S - I Optimizations of ASEs

Figure S1. Optimizations of ASEs on (a) alum concentration and (b) oil phase volume for smallest sizes, (c) buffer type, (d) buffer pH, (e) ultrasonic power, (f) ultrasonic temperature (Ice-bath was in ice-water mixture, Hot-bath was at 60 °C hot water), and (g) ultrasonic time for the similar size. Data were shown as mean \pm s.e.m. (n = 3).

S – II Zeta potentials of ASEs in different buffer type

Figure S2. Zeta potentials of ASEs in different buffer type. Data were shown as mean \pm s.e.m. (n = 3).

S – III Fluidic alum/antigen complex proportions of ASEs

Figure S3. (a) Pictures of ASEs after centrifugation and (b) Alum/Antigen complex (antigen concentration in the subnatant). Data were shown as mean \pm s.e.m. (n = 3).

S – IV Endotoxin level of ASEs and alum

Figure S4. Endotoxin level of ASEs and alum. FDA guidelines indicate that sterile water for injection may contain 0.25 EU·mL⁻¹ of endotoxin (dashed line). Data were shown as mean \pm s.e.m. (n = 6).

S - V Tissue distribution analysis

Antigens were labeled by Cy5 and co-loaded on ASEs, which were subsequently injected intramuscularly and traced by *in vivo* fluorescence imaging system. As the result, no datable fluorescent signals were observed in lungs, livers, hearts, spleens or kidneys, indicating that the droplets were hardly distributed in the major organs.

S - VI Zeta potentials of ASEs

Figure S6. Zeta potentials of ASEs from Day 0 to Day 30 of storage at (a) 4 °C, (b) 25 °C and (c) 37 °C. Data were shown as mean \pm s.e.m. (n = 6).

	Heart/%	Liver/%	Spleen/%	Lung/%	Kidney/%
ASE-Squalene	0.13 ± 0.02	0.022 ± 0.34	0.11 ± 0.013	0.08 ± 0.012	0.08 ± 0.028
ASE-Soybean	0.03 ± 0.007	0.026 ± 0.014	0.05 ± 0.011	0.06 ± 0.017	0.14 ± 0.009
ASE-Peanut	0.02 ± 0.029	0.15 ± 0.11	0.026 ± 0.016	0.22 ± 0.08	0.093 ± 0.016
ASE-Olive	0.01 ± 0.02	0.009 ± 0.004	0.04 ± 0.029	0.08 ± 0.054	0.07 ± 0.065
PBS	0.02 ± 0.004	0.03 ± 0.028	0.05 ± 0.013	0.057 ± 0.01	0.014 ± 0.01

Table S1 Aluminum concentration ratio in organ homogenate for 3 days after intramuscularly injected with ASEs

Aluminum concentration ratio = Aluminum concentration in organ homogenate / Total aluminum of ASEs \times

100%