Electronic Supplementary Material

Beta-cyclodextrin adsorbents to remove water pollutants—a commentary

Fadina Amran^{1,2}, Muhammad Abbas Ahmad Zaini $(\boxtimes)^{1,2}$

1 Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu-Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, Johor, Malaysia

2 School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

E-mail: abbas@cheme.utm.my

Class of adsorbent	Adsorbent	Preparation	Reference
Crosslinked β-CD-based adsorbent	Citric acid crosslinked β-CD	 6 g of dried β-CD, 3 g of anhydrous citric acid, 1.5 g of monopotassium phosphate, and 135 mL of distilled water were mixed. The mixture was dried in an oven at 140 °C for 3.5 h. The crude product was washed, filtered, and dried. 	[5]
	Citric acid crosslinked β-CD	 6 g of dried β-CD, 3 g of anhydrous citric acid, 1.5 g of monopotassium phosphate, and 135 mL of distilled water were mixed. The mixture was dried in an oven at 140 °C for 3.5 h. The crude product was washed, filtered, and dried at 50 °C. 10 g of sulphuric acid and 10 g of the product were added to the toluene and refluxed at 80 °C for 6 h. The solid was separated, washed, and dried in an oven. 	[4]
	Citric acid- crosslinked β-CD	 3 g of citric acid, 6 g of β-CD, 1.5 g of monopotassium phosphate, and 135 mL of ultrapure water were mixed and stirred. The mixture was heated in an oven at 140 °C for 3.5 h. The mixture was cooled, and the product was purified by soaking in 500 mL of water for 5 times. The product was filtered and dried at 50 °C. 	[3]
	Citric acid- crosslinked β-CD	 β-CD, polyethylene glycol 400, citric acid monohydrate, sodium dihydrogen phosphate, and deionized water were mixed and stirred in a boiling water bath. The mixture was transferred into a culture dish and heated at 140 °C for 4 h in an electric thermostatic oven. The crude product was naturally cooled, weighed, and ground. The granules were purified several times with deionized water, filtered, and 	[30]
	Citric acid- crosslinked β-CD	 dried at 50 °C. 10 g of β-CD, 5 g of citric acid momohydrate, 0.5 g of sodium dihydrogen phosphate, 1 g of poly (vinyl alcohol) 1799, and 50 mL of deionized water were mixed and stirred in boiling water bath. 	[23]

Table S1 Synthesis strategies of β -CD-based adsorbents	Table S1	Synthesis	strategies	of β-CD-based	adsorbents.
--	----------	-----------	------------	---------------	-------------

Crosslinked β-CD polymer	 The mixture was transferred into a culture dish, and heated in an oven at 140 °C for 4 h. The mixture was naturally cooled. The crude product was weighed and grinded into fine granulae. The granulae were purified, filtered, and dried at 50 °C. Add 11.1 g of β-CD, 4.95 g of 4,4'-difluorodiphenylsulfone, 20 mL of toluene and 80 mL of dimethylacetamide were added into a three-neck round flask. 8.07 g of potassium carbonate was added and the solution was stirred at 150 °C for 12 h under nitrogen atmosphere. The solution was slowly dropped into water/ethanol (volume ratio: 1:1) solution. The precipitates were recovered by centrifugation and washed several times. 	[29]
Amphoteric β-CD- based adsorbent	 The crosslinked polymer was dried at 60 °C for 12 h. 2 g of citric acid crosslinked β-CD and 2 g of potassium persulfate were soaked in 400 mL deionized water. The mixture was stirred at 80 °C for 30 min. 10 mL of 2-dimethylamino ethyl methacrylate monomer was added to the mixture. 	[32]
Crosslinked sawdust-β-CD polymers	 The solution pH was adjusted to neutral using 1 mol/L hydrochloric acid and stirred at 80 °C for 3 h. The product was collected by suction filtration, washed five times, and dried at 45 °C for overnight. 60-80 mesh of sawdust was rinsed with deionized water, and dried at 105 °C for 24 h. 2 g of sawdust, 5 g of β-CD, 3 g of citric acid, and monosodium phosphate were mixed with 50 mL of deionized water, and subjected to sonic oscillation for 20 min. 	[62]
Crosslinked 1,2,3,4-	 The mixture was cured at 160 °C for 15 min. The solid was washed with warm water and alcohol. The sample was dried at 105 °C. 2.27 g of β-CD was dissolved in 20 mL of pyridine and stirred. 1, 2, 3, 4-butanetetracarboxylic dianhydride was added to the solution. 	[35]

butanetetracarboxyl ic dianhydride/ β- CD	 The mixture was stirred at 40-150 °C for 24 h. The mixture was cooled, poured into a solution of 80 mL of acetone and 20 mL of 5 % acetic acid, and stirred for 30 min. The precipitate was washed three times, dried at 60 °C for 24 h in a vacuum oven, and passed through a 100-mesh sieve. 	
Ethylenediaminetet raacetic acid- crosslinked β-CD	 4 g of dried β-CD, 6 g of EDTA, 2.68 g of sodium dihydrogen phosphate, and 20 mL of deionized water were mixed and stirred at 100 °C for 1 h. Polyethylene glycol 200 was added dropwise to the solution. The mixture was transferred into a Petri dish and heated in an oven at 155 °C for 10 h. 	[12]
	 The mixture was cooled, the product was ground, and soaked with 500 mL of deionized water. The product was filtered and rinsed with a large amount of 0.1M hydrochloric acid, deionized water, and 0.1M sodium hydroxide. The product was dried in a vacuum at 60 °C for overnight. 	
β-CD-derived polymer networks	 15.0 g β-CD was dissolved in 150 mL methanesulfonic acid and pre-reacted for 45 min with bath sonication. The solution was then heated and maintained at 110 °C for 48 h. The solution was cooled in an ice bath and quenched with water. The solid was collected and washed with copious amounts of water. Soxhlet extraction by water was then conducted for 24 h to remove uncrosslinked low molecular weight material. 	[36]
4,4'- (hexafluoroisoprop ene) diphthalic acid-crosslinked β- CD	 The solid was dried in a vacuum oven at 80 °C for 24 h. The dried solid was then ground into a fine powder with a coffee grinder. The amounts of 4,4'-(hexafluoroisopropene) diphthalic acid and β-CD (molar ratio, 3:1) were weighed and added into a 600 mL beaker. 0.25 g of potassium dihydrogen phosphate and 100 mL of deionized water were added The mixture was oven-dried at 140 °C for 3.5 h. 	[37]
β-CD/	 The material was repeatedly rinsed with deionized water and oven-dried. 0.41 g of β-CD, 0.20 g of tetrafluoroterephthalonitrile and 0.64 g of potassium 	[38]

	tetrafluoroterephtha lonitrile	 carbonate were added into a 48 mL pressure vessel. 16 mL solution mixture of tetrahydrofuran/N,N-dimethylformamide (v/v, 9:1) was added under nitrogen atmosphere. The vessel was sealed and magnetic stirred for 48 h at 60 °C and 500 rpm/min. The orange suspension was cooled to room temperature and filtered. The residual of potassium carbonate was neutralized with 1 M hydrochloric acid. The rest of solid product on filter paper was soaked in water (1 × 10 mL) for 15 min, tetrahydrofuran (2 × 10 mL) for 30 min and dichloromethane (1 × 15 mL) for 15 min. The product was dried in a vacuum freeze dryer for 24 h. 	
Porous β- CD-based adsorbent	Hyper-crosslinked β-CD	 The product was dired in a vacuum freeze dryer for 24 n. <i>Benzylated β-CD</i> 500 mg of β-CD dissolved in 10 mL of anhydrous N,N-dimethylformamide. The solution was cooled to 0 °C and 740 mg of 60 % sodium hydride was added under nitrogen atmosphere. The solution was stirred for 15 min, 2.20 mL of benzyl bromide was slowly added, and the mixture was warmed to room temperature. The mixture was stirred for 24 h, and 5 mL of methanol was added. The residue was diluted with 100 mL of water, and extracted with 3×50 mL of methylene chloride. The combined organic layers were washed, dried with anhydrous sodium sulphate, filtered, and concentrated using rotary evaporators. The product was purified by silica gel chromatogprahy (n-hexane to ethyl acetate, 8:1). <i>Hyper-crosslinked β-CD porous polymer</i> 0.46 g of benzylated β-CD and 1.10 g of dichloroxylene were dissolved in 1,2-dichloroethane. 1.03 g of iron (III) chloride was slowly added under nitrogen atmosphere. The mixture was cooled, the brown precipitate was recovered by filtration, washed until the filtrate became colourless, and purified by Soxhlet extraction with methanol for 24 h. 	[31]

	Porous β-CD polymer	 The product was dried under vacuum at 50 °C for 24 h. A flame dried 20 mL scintillation vial was charged with 0.2 g of β-CD, 0.1 g of tetrafluoroterephthalonitrile, and 0.3 g of potassium carbonate. The vial was flushed with nitrogen gas for 5 min, and 8 mL of dry tetrahydrofuran was added. The vial was bubbled with nitrogen gas for 2-3 min. The nitrogen gas was removed, and the mixture was stirred at 85 °C, 500 rpm for 48 h. The suspension was cooled, filtered, and the residual potassium carbonate was washed on a filter paper. The solid was soaked in 20 mL of water for 15 min, 20 mL of tetrahydrofuran for 30 min, and 15 mL of dichloromethane for 15 min. The solid was dried in a liquid nitrogen bath at -196 °C for 10 min and then at 25 °C for 48–72 d. 	[43]
Grafted/impri nted β-CD- based adsorbent	Ethylenediaminetet raacetic acid- crosslinked β-CD polymer grafted onto Fe-A1 hydroxides	 <i>Fe-Al bimetallic hydroxides (co-precipitation)</i> 0.1 M Iron (III) chloride and aluminium chloride (v/v, 1:1) were mixed, heated in a water bath at 65 °C for 30 min. 1 M sodium hydroxide was added to the mixture, stirred for 30 min and solution pH was maintained to 7.0-7.4. The mixture was allowed to stand for 4-10 h. The supernatant was drained and the sediment was dried in an oven at 60 °C. The solid was washed three times, oven-dried, and grounded to pass through 100-mesh screen. <i>Fe-Al hydroxides coated with ethylenediaminetetraacetic acid-crosslinked β-CD</i> 4 g of β-CD, 1 g of Fe-Al bimetallic hydroxides, and 0.5 g of polyethylene glycol 200 were dissolved in a 20 mL of 0.01 M sodium hydroxide solution. The mixture was stirred in water bath at 60 °C for 20 min. 5 g of ethylenediaminetetraacetic acid vas added to the mixture and stirred until the formation of a thick sol-like substance. The solution was poured into a polytetrafluoroethylene reactor and reacted at 	[13]

160 °C for 24 h.

• The product was washed, dried in an oven, and ground in a mortar.

 β -CD grafted silica Mono[6-O-(p-toluenesulfonyl)]- β -CD

gel

- 6 g of sodium hydroxide in 20 mL water was added dropwise to a 56.8 g of β -CD in 500 mL water and stirred at 10-15 °C for 15 min.
- 11.4 g of p-toluenesulfonyl chloride in 30 mL acetonitrile was added dropwise at 10-15 °C for 45 min.
- The solution was stirred for 3 h at 25 °C.
- The precipitate was collected by suction filtration and suspended in 300 mL of water with magnetic stirring for 3 h.
- The precipitate was washed and dried in a vacuum at 80 °C for 8 h. *Mono (6-ethylenediamine)-\beta-CD*
- A solution of 6.45 g of mono[6-O-(p-toluenesulfonyl)]- β -CD in 22.5 g of ethylenediamine was stirred at 70 °C for 24 h.
- The solution was poured into 400 mL of ethanol.
- The precipitate was collected by suction filtration and dried in vacuum at 80 °C for 8 h.
- The powder was recrystallized two times in 10 mL of water and dried in a vacuum at 80 °C for 8 h.

Silica gel-grafted (3-chloropropyl)trimethoxysilane

- 40 g of silica gel was added to a solution of 100 mL of 37% hydrochloric acid in 100 mL of water.
- The mixture was heated and stirred for 12 h.
- The activated silica gel was collected by suction filtration, washed with distilled water and dried in a vacuum at 150 °C for 12 h.
- 30 g of silica gel was suspended in a solution of 30 mL of anhydrous triethylamine, 50 mL of (3-chloropropyl)trimethoxysilane and 250 mL of dry toluene.
- The mixture was heated and stirred for 72 h under nitrogen atmosphere.
- The suspension was filtered, washed, and dried in a vacuum at 80 °C for 24 h. *Silica gel-grafted* β -*CD*

- 20 g of silica gel-grafted was added to a solution of 20 g of mono (6-ethylenediamine)- β -CD, 0.5 of g potassium iodide in 250 mL of N, N-dimethylformamide.
- The mixture was heated and stirred at 110 °C for 96 h under nitrogen atmosphere.
- The suspension was filtered, washed, and dried in a vacuum at 80 °C. *Methacrylic acid-β-cyclodextrin monomer*

Magnetic molecularly imprinted polymer methacrylic acid-β-CD

- 0.5 M methacrylic acid and 1 M toluene 2,4-diisocyanate were mixed in 40 mL dimethylacetamide solvent.
- 0.1 % dibutyltin dilaurate was added and the solution was stirred magnetically in an inert atmosphere for 1 h at 25 °C.
- 0.5 M β -CD and 10 mL dimethylacetamide were added and stirred for 2 h. *Magnetic molecularly imprinted polymer methacrylic acid-\beta-CD*
- 0.56 mmol methacrylic acid-β-cyclodextrin monomer, 2.80 mmol trimethylolpropane trimethacrylate and 1 g Benzoyl peroxide were added.
- The mixture was purged for 10 min with nitrogen gas, sealed and allowed to polymerize for 24 h in a water bath at 70 °C.
- The product was crushed, grounded and sieved to obtain regular-sized polymer particles.
- The magnetic molecularly imprinted polymer was synthesized via a one-step coprecipitation method under a nitrogen atmosphere.
- The ratio of magnetic molecularly imprinted polymer: FeCl₂.4H₂O:2FeCl₃.6H₂O was weighed and mixed in 100 mL of deionized water.
- The mixture was stirred for 30 min at 1200 rpm.
- 12 mL of ammonia solution was added and the mixture was stirred for 1 h at 90 °C.
- The magnetic particles were washed with ethanol and ultrapure water to remove unreacted particles.
- The product was isolated with the application of an external magnet and dried in an oven at 60 °C.
- The polymer was washed with the methanol/ acetic acid (9: 1 v/v) solution and

[46]

ultrapure water.

- *Graphene oxide*A mixture of concentrated su
- A mixture of concentrated sulphuric acid/phosphoric acid (360: 40 mL) was slowly added to a mixture of 3 g of graphite flakes and 18 g of potassium permanganate.
- The solution was heated to 35-40 °C.
- The solution was placed in a water bath at 50 °C and stirred for 12 h.
- The mixture was cooled and poured onto 400 mL of ice.
- 6-7 mL of 30 % hydrogen peroxide was dropwise added into the mixture and stirred constantly until bright yellow product appeared.
- The graphene oxide was washed and freeze-dried.

 β -CD/chitosan functionalized graphene oxide hydrogel

- Graphene oxide was dispersed in deionized water and sonicated for 2 h.
- 0.24 g of β -CD was added to 20 mL of graphene oxide solution under magnetic stirring and further sonicated for 30 min.
- 0.4 mL of glacial acetic acid and 0.12 g of chitosan were added to the solution and stirred for 2 h.
- 1 wt % genipin alcohol solution and 0.2 g of sodium ascorbate were added to the solution and stirred for 10 min.
- The solution was transferred into a 100 mL Teflon-lined autoclave and heated at 90 °C for 12 h.
- The sample was placed in deionized water for 24 h and the water was changed every 2 h.
- The hydrogel was freeze-dried for 24 h.

Graphene oxide-β- *Graphene oxide*

- CD nanocomposite Phosphoric acid was added dropwise to sulphuric acid and the mixture was stirred at 25-35 °C.
 - Graphite was added to the mixture.
 - The black dispersed solution was treated with potassium permanganate and left for 3 d.
 - Hydrogen peroxide was added dropwise, and yellow coloured solution was

[28]

[16]

formed.

- The pH solution was adjusted to neutral by treating with hydrochloric acid and distilled water.
- The solution was dried in an oven at 70 °C.

Graphene oxide-\beta-CD nanocomposite

- A solution of 60 mL of graphene oxide in water and 60 mL of mM β -CD were treated with 1 mL of 25-28 % ammonia solution.
- 0.5 mL of 50 % hydrazine solution was added and stirred continuously.
- The vial was heated in a water bath at 60 °C for 8 h.
- The dispersion was filtered by cellulose acetate membrane, washed, and dried in an oven.

Crosslinked chitosan/β-CD composite

- 9 g of β-CD and 15 g of maleic anhydride were added in 100 mL of anhydrous [11] N,N-dimethylformamide, and transferred into a two-necked round-bottomed flask under nitrogen atmosphere.
- The mixture was stirred at 25 °C for 48 h.
- 50 mL of ethyl acetate was added to the solution to form white gel-like precipitate and this process was repeated three times.
- The product was recovered by filtration and dried at 50 °C in a vacuum for overnight.
- 2 g of product, 0.5 g of chitosan, and 0.25 g of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride were dissolved in 100 mL of deionized water.
- The mixture was stirred for 2 h and 0.5 g N-hydroxysuccinimide was added.
- The solution was stirred for 48 h and precipitated with acetone for several times.
- The product was sealed with Parafilm at 4 °C for 12 h and dissolved in 50 mL of 1 % glutaraldehyde solution.
- The solution was stirred for 24 h, centrifuged and dried at 60 °C.

Graphene/β-CD composite

- Graphene oxide dispersion was obtained by dissolving the graphene oxide in [7] water.
- The solution pH was adjusted to 9-10 using hydrochloric acid and sodium hydroxide solutions.

- 12 mL of epichlorohydrin was slowly added into the solution and stirred at 60 °C for 8 h.
- The produced graphene oxide-O was centrifuged and washed with distilled water.
- 50 mL of water was added to graphene oxide-O suspension to obtain graphene oxide-O dispersion.
- 1 g of β -CD was added into the dispersion.
- 5 mL of hydrazine was slowly added under stirring.
- The graphene/ β -CD solution was filtered and rinsed with deionized water.
- Graphene/ β -CD composite was obtained and dried at 60 °C for 48 h.

β-CD/poly(acrylic *Graphene oxide*

acid)/ graphene

nanocomposites

- oxide
- 23 mL of sulphuric acid was mixed with 1 g graphite and the mixture was kept at 0 °C in an ice bath.
- 0.5 g of sodium nitrate was added to the mixture, potassium permanganate was gradually added, and the temperature was kept below 10 °C.
- The mixture was stirred with a mechanical stirring for 2 h.
- The mixture was heated to 35 °C for 12 h.
- 140 mL of deionized water was added to the mixture and stirred for 30 min at 90 °C.
- 50 mL of 30 % hydrogen peroxide was added to the mixture and cooled to room temperature.
- The mixture was filtered, washed three times, and dried in a vacuum oven. $(p-tolysulfonyl)-\beta-CD$
- 10 g of β -CD was suspended in 140 mL water and 40 mL of 2.5M sodium hydroxide was added dropwise.
- 2.6 g of p-Toluenesulfonyl chloride in 10 mL of acetonitrile was added to the solution.
- The mixture was agitated for 3 h, filtered, and neutralized with hydrochloric acid.
- The filtrate was kept overnight at 4 °C.
- The precipitate was recovered by filtration and washed 3 times.

[47]

- The crude product was recrystallized from 150 mL of hot water at 90 °C at least three times.
- The pure (p-tolysulfonyl)- β -CD crystals were dried at 60 °C for 48 h in a vacuum.

 NH_2 - β -CD (amino-functionalized β -CD)

- 5 g of pure (p-tolysulfonyl)- β -CD was dissolved in 30 mL of anhydrous ethylenediamine and the mixture was kept at 80 °C for 72 h.
- The solution was cooled to room temperature.
- The crude NH₂-β-CD was obtained re-precipitation of the solution from a large amount of acetone.
- The precipitate was dissolved in a 90 mL of water and 30 mL of methanol.
- The precipitation and dissolution were repeated two more times and the product was dried at 60 °C for 48 h.

 β -*CD*/ *poly*(*acrylic acid*)

- 0.5 g of poly(acrylic acid) was dissolved in 45 mL of deionized water, and 1ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride and Nhydroxysuccinimide were added to the solution with vigorous stirring.
- The mixture was kept at 0 °C for 10 min.
- 3.5 g of NH_2 - β -CD was added to the solution and stirred for 48 h.
- The solution was dialyzed against deionized water for 3 d.
- The solution was concentrated in a rotary evaporator (10-15 wt %) and dried in a vacuum.

 β -CD/poly(acrylic acid)/graphene oxide nanocomposites

- 0.1 g of graphene oxide was dispersed in 5 mL of phosphate buffer solution, stirred, and ultrasonicated for 30 min.
- 0.1 g of β -CD/ poly(acrylic acid) and 0.03 g of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride were added to the graphene oxide dispersion and the mixture was sonicated at 4 °C for 1 h.
- The mixture was stirred for 48 h at room temperature, centrifuged at 8000 rpm for 10 min, and the solid was washed with deionized water.
- The product was dried for 48 h in a vacuum.

Nanosilicasupported poly β-CD

Silica nanoparticles

- 18 mL of 28 wt % ammonia solution was mixed with 180 mL of absolute ethanol in a 250 mL single-neck flask.
- 10 mL ethyl orthosilicate was dropwise added into the solution and stirred at 40 $^{\circ}$ C for 8 h.
- 3-(trimethoxysiyl)propyl methacrylate was added into the solution and reacted with silica nanoparticles for 24 h.
- Solid product (SiO₂-3-(trimethoxysiyl)propyl methacrylate) was recovered by centrifugation, washed, and dried at 60 °C in a vacuum oven.
 Modified β-CD
- 8 g of β -CD and 4.38 g of triethylamine were dissolved in 50 mL of N, N-dimethylformamide and stirred at 40 °C.
- The solution was cooled and a solution of 1.36 g of acryloyl chloride in 5 mL of N, N-dimethylformamide was dropwise added into the solution in a period of 30 min.
- Trimethylamine hydrochloride was filtered and poured into a large amount of acetone.
- The product was purified by recrystallizing for three times and dried under vacuum.

Nanosilica-supported poly β *-CD*

- 0.2 g of β -CD was dissolved in 100 mL mixed solution of deionized water and acetonitrile (v/v, 2:3).
- 0.1 g of SiO₂-3-(trimethoxysiyl)propyl methacrylate was dispersed under ultrasonic dispersion.
- 2,2'-azobis(isobutyronitrile), ethylene glycol dimethacrylate and methylacrylic acid were added into the solution.
- The mixture was heated to boiling state and refluxed for 2 h.
- The product was filtered and washed.

 $\begin{array}{l} \beta\text{-}CD\text{-}glycine-\\ modified \ TiO_2\\ nanoparticles \end{array}$

٠

• TiO₂ nanoparticles were heated for 4 h at 300 °C.

[8]

[48]

- 15 wt % glycine was dissolved in 20 mL methanol at 40 °C.
- 0.1 g of TiO₂ nanoparticles was added into the solution and stirred at 25 °C for

24 h.

	β-CD/citric acid/ polydopamine composite	 The mixture was ultrasonicated for 30 min. The suspension was filtered, washed and dried for 24 h at 60 °C. 0.4 % (m/v) β-CD was dissolved in 5 mL of deionized water. 0.5 g of TiO₂/gly was added in the solution and homogenized with a magnetic stirrer. 2 µL of epichlorohydrin was added to the solution and incubated for 24 h. The sample was centrifuged and washed with deionized water. <i>Preparation of citric acid/β-CD</i> 0.5 g of monopotassium phosphate, 1.5 g of β-CD, citric acid and 60 mL of deionized water were mixed and stirred/sonicated to homogeneity. The mixture was heated to 145 °C for 3.5 h. The product was washed and dried. <i>Preparation of β-CD/citric acid/polydopamine composite</i> 2 g of citric acid/β-CD was dispersed in 50 mM Tris buffer solution (pH = 8.0–8.5) by magnetic stirring. 	[49]
Magnetic β- CD-based adsorbents	Magnetic β-CD stabilized Fe ₃ S ₄ nanoparticles	 0.4 g of dopamine hydrochloride was added, coating at 25 °C for 24 h. The sample was washed, centrifuged, and dried. 1.2 mmol of ferric acetylacetonate, 50 mL of ethylene glycol, and the certain amount of β-CD were mixed under magnetic stirring. The mixture was heated to 160 °C for 30 min. 10 mL of 0.012 g/mL thiacetamide ethylene glycol solution was injected continuously to the solution by a syringe pump at 160 °C for 30 min. The solution was stirred at 160 °C for 2 h (the whole procedure was carried out under nitrogen atmosphere). The mixture was washed several times, and dried in a vacuum at 60 °C for overnight. 	[63]
	β-CD-chitosan modified Fe ₃ O ₄ nanoparticles	 5 g of 4 % chitosan gel, 1.5 g of maleoyl-β-CD, 0.3 g of 1-ethyl-3-(3-dimethylaminoprophy) carbondiimide hydrochloride and 15 mg of 4-Dimethylaminopyridine were dissolved in 50 mL of water and stirred for 48 h. 	[14]

- The solution was precipitated with 100 mL of acetone and the white precipitate was filtered through a Buchner funnel.
- The precipitate was washed and β -CD-chitosan were obtained.
- 0.3 g of β -CD-chitosan was dissolved in 50 mL of 2 % acetic solution.
- 0.1 g of magnetic particles were added in the solution.
- After ultrasonic dispersion, 3.3 mL of liquid paraffin and Span-80 were added in the solution.
- The solution pH (8-9) was adjusted by adding 1.5% (v/v) ammonium hydroxide solution.
- The solution was mixed with pure glutaraldehyde and stirred at 55 °C for 1.5 h.
- The precipitate was washed and dried in a vacuum oven at 40 °C.

Magnetic β -CD/ graphene oxide nanocomposite

- Natural flake graphite was added to concentrated sulphuric acid, nitric acid, and potassium permanganate.
- The mixture was ultrasonicated.

Graphene oxide nanosheets

- 20 % hydrogen peroxide was added to the suspension.
- The product was rinsed with deionized water.

Magnetic β *-CD/graphene oxide nanocomposite*

- 0.5 g of Fe₃O₄ was mixed with 20 mL of 80 mg/mL NH₂- β -CD and 100 mL of ammonia solution.
- 5.0 mL of pure glutaraldehyde was added to the solution and stirred at 50 °C for 30 min.
- 20 mL of homogenous graphene oxide was added and vigorously shaken for a few minutes, and then was put in a water bath at 60 °C for 3.5 h.
- Magnetic β -CD/ graphene oxide nanocomposite was collected using an adscititious magnet and was dried in a vacuum oven at 50 °C.

Magnetic β-CDchitosan/graphene oxide β -CD-chitosan modified Fe₃O₄ nanoparticles

[10]

[9]

- The 250 mL of 1.5 mol/L ammonia solution was added in a four-neck round-bottomed flask.
- 1.73 g of FeCI₃.6H₂O and 0.627 g of FeCI₂.4H₂O were dissolved in 25 mL of distilled water and N₂ purge gas was connected to the flask.

- The solution was dropwise to ammonia solution and stirred in a water bath at 90 °C for 1.5 h.
- Magnetic particles were then obtained by magnetic separation.
- 0.3 g of β -CD-chitosan was dissolved in 50 mL of 3 % acetic solution.
- 0.1 g of magnetic particles were added in the solution.
- After ultrasonic dispersion, the solution pH (8-9) was adjusted by adding 1.5% (v/v) ammonium hydroxide solution.
- The solution was mixed with pure glutaraldehyde and stirred at 55 °C for 1.5 h.
- The precipitate was washed and dried in a vacuum oven at 40 °C.

Magnetic β *-CD-chitosan/graphene oxide*

- A graphene oxide was sonicated for 2 h in ultrapure water.
- 0.1 M 1-ethyl-3-(3-dimethylaminoprophy) carbondiimide hydrochloride and 0.1 M N-hydroxyl succinimide were added to the graphene oxide dispersion with continuous stirring for 2 h.
- The solution pH was maintained at 7 using dilute sodium hydroxide.
- 0.1 g of magnetic β-CD-chitosan, the activated graphene oxide solution and 5 mL glutaraldehyde were mixed and dispersed by ultrasonic dispersion for 10 min.
- The solution was stirred at 65°C for 2 h.
- The precipitate was washed, collected by magnet and dried in vacuum oven at 50 $^{\circ}$ C.
- Carboxymethyl- β *Carboxymethyl-\beta-CD*

CD modified Fe₃O₄

nanoparticles

• A mixture of 10 g of β -CD and 9.3 g of sodium hydroxide was mixed in 37 mL water.

- The solution was treated with a 27 mL of 16.3 % monochloroacetic acid solution at 50 °C for 5 h.
- The solution pH was adjusted to 6-7 using hydrochloric acid.
- The mixture was then poured to superfluous methanol solvent.
- The solid precipitates was filtered and dried in a vacuum.

Carboxymethyl-\beta-CD modified Fe₃O₄ nanoparticles

• 100 mg of magnetic nanoparticles were added to 2 mL of buffer A and sonicated

[52]

for 5 min.

- 0.5 mL of carbodiimide solution was added into the mixture and further sonicated for 15 min.
- 2.5 mL of carboxymethyl--β-CD was added and sonicated for another 90 min.
- The carboxymethyl-β-CD bound magnetic nanoparticles were recovered using a permanent magnet, washed with buffer A and dried in a vacuum oven.

Carboxymethyl-β-

CD conjugated magnetic nanoparticles

- Carboxymethyl-β-CD
 - A mixture of β -CD and sodium hydroxide in water was treated with a 16.3% monochloroacetic acid solution at 50 °C for 5 h.
 - The mixture pH was adjusted to 6-7 using hydrochloric acid.
 - The mixture was then poured to superfluous methanol solvent.
 - The precipitated solid was filtered and dried to produce carboxymethyl- β -CD. *Carboxymethyl-\beta-CD modified Fe₃O₄ nanoparticles*
 - *i) Carbodiimide* (*two-steps method*):
 - 100 mg of magnetic nanoparticles were added to 2 mL of buffer A and sonicated for 5 min.
 - 0.5 mL of carbodiimide solution was added into the mixture and further sonicated for 15 min.
 - 2.5 mL of carboxymethyl-β-CD was added and sonicated for another 90 min.
 - The carboxymethyl- β -CD bound magnetic nanoparticles were recovered using a permanent magnet, washed with buffer A and dried in a vacuum oven.
 - *ii) Co-precipitation (one-step method):*
 - 1 g of Fe₃O₄ precipitate and 1.5 g of carboxymethyl-β-CD were dissolved in 400 mL of de-aerated Milli-Q water with vigorous stirring.
 - 5 mL of 25% NH₄OH was added into the solution and was heated for 1 h at 90°C under constant stirring and nitrogen environment.
 - The resulted nanoparticles were washed and dried in a vacuum oven.

Carboxymethyl-β-

Carboxymethyl-*β*-CD

CD modified Fe₃O₄ nanoparticles

- 5 g of β -CD was dissolved in 50 mL of 10 % sodium hydroxide.
- 10 mL of epichlorohydrin was added into the solution and stirred for 8 h.
- Another 5 mL of epichlorohydrin was added and the mixture was kept for 24 h

[6]

[53]

at 24 °C.

- The solution was precipitated by addition of 500 mL of cold ethanol.
- The precipitate was crushed several times with ethanol in a mortar to obtain fine precipitate.
- The precipitate was washed and dried under high vacuum for 12 h.
- 2 g of the above polymer was dissolved in 50 mL of 5 % sodium hydroxide and 2 g of monochloroacetic acid.
- The mixture was stirred for 24 h, neutralized with 2 M hydrochloric acid, concentrated to 15 mL and cooled to 4 °C.
- The precipitate was filtered and the supernatant was precipitated by addition of 500 mL cold ethanol.
- The precipitate was washed and dried under high vacuum for 12 h. *Carboxymethyl-β-CD coated Fe₃O₄ nanoparticles*
- 0.86 g of FeCl₂.4H₂O, 2.36 g of FeCl₃.6H₂O and 1.5 g of carboxymethyl-β-CD were dissolved in 40 mL of de-aerated Milli-Q water with stirring at 1200 rpm and heated up to 90 °C.
- 5 mL of 25 % NH₄OH was mixed into the solution at 90 °C for 1 h under nitrogen environment.
- The carboxymethyl-β-CD coated Fe₃O₄ nanoparticles were washed and dried in a vacuum oven.

Magnetic β-CDgraphene oxide

nanocomposites

- Amino Fe₃O₄ nanoparticles
 1.35 g of ferric chloride hexahhydrate, 1 g of polyethylene glycol, 3.6 g of anhydrous sodium acetate, and 40 mL of ethylene glycol solution were mixed and stirred for 30 min.
- The mixture was transferred into a stainless steel autoclave, and maintained at 200 °C for 8 h.
- The precipitate was obtained by magnetic separation, washed, and dried at 40 °C for 6 h.
- The Fe₃O₄ nanoparticles were obtained.
- 0.1 g of Fe₃O₄ nanoparticles and 200 mL of 99.5 % ethanol were mixed with a mechanical agitation for 30 min.

[15]

- 2 mL of 3-aminopropyltriethoxysilane was added to the solution and stirred for 6 h.
- The precipitate was washed, dried in a vacuum at 40 $^{\rm o}{\rm C}$ for 6 h. *Graphene oxide*
- 120 mL of sulphuric acid, 13 mL of phosphoric acid, 6 g of potassium permanganate, and 1 g of graphite flakes were mixed.
- The mixture was heated and stirred at 50 °C for 12 h.
- The mixture was poured into a solution of 130 mL of ice and 3 mL of 30 % hydrogen peroxide.
- The mixture was centrifuged at 8000 rpm for 1 h, and the supernatant was decanted away.
- The solid was washed, and dried in a vacuum at 40 $^{\circ}$ C for 6 h.

Carboxymethyl-β-CD

- 2 g of β -CD, 1.86 g of sodium hydroxide, and 1.06 g of monochloroacetic were dissolved in 12.8 mL of water, and ultrasonicated for 30 min.
- The mixture was heated to 50 °C for 5 h with magnetic stirring.
- The solution was cooled, and neutralized (6-7) by adding hydrochloric acid.
- The solution was poured to superfluous methanol solvent.
- The precipitate was dried in a vacuum at 40 °C for 6 h.
- β -*CD*-graphene oxide nanocomposites
- 0.1 g of Fe₃O₄ nanoparticles were mixed with 20 mL of 0.003 M sodium phosphate buffer and ultrasonicated for 30 min.
- 0.1 g of 1-ethyl-3-(3-dimethylaminoprpphy) carbondiimide hydrochloride and 0.5 g of carboxymethyl-β-CD were dissolved in 10 mL of sodium phosphate buffer, and added to the solution.
- The mixture was ultrasonicated for 30 min, and stirred for 2 h.
- The product was washed, dried in a vacuum at 40 °C for 6 h.
- 0.1 g of graphene oxide was added into 50 mL of water.
- 0.1 g of -ethyl-3-(3-dimethylaminoprpphy) carbondiimide hydrochloride and 0.1 M of N-hydroxyl succinimide were added to the graphene oxide dispersion, and stirred for 2 h.

- 0.2 g of Fe₃O₄/ β -CD were added to the solution, and dispersed for 30 min.
- The product was collected using external magnet, and dried in a vacuum at 40 °C for 6 h.

Ammonium β-CD- *Magnetic nanoparticles*

Fe₄O₃-graphene oxide

[54]

[51]

- FeCI_{3.6}H₂O and FeCI_{2.4}H₂O (molar ratio, 2:1) were reacted under nitrogen atmosphere.
- The solution pH was adjusted (10-11) by adding excess ammonia solution under ultrasonic agitation, and was dispersed for 30 min.

Quaternary ammonium β *-CD–conjugated magnetic nanoparticles*

- 10 g of β -CD and 2.6 g of succinic anhydride were dissolved in N, N-dimethylformamide, and stirred at 70 °C for 10 h under nitrogen atmosphere.
- The solution pH was adjusted (8-9) by adding 10 wt % sodium hydroxide solution.
- 5.34 g of 2, 3-glycidyltrimethylammonium chloride was added, and stirred at 70 °C for 6 h.
- The solution pH was adjusted (5-6) and was kept for 2 h.
- 0.681 g of magnetic nanoparticles were added to the solution, ultrasonicated, and kept for 20 min under nitrogen atmosphere.
- The precipitate was washed, and dried in a vacuum at 60 °C for 12 h.

Magnetic copperbased metalorganic framework

conjugated

nanoparticles

magnetic

- 0.2 g of graphene oxide powder was sonicated in 240 mL of ultrapure water for 1 h.
- 1.8 g of FeCl₃.6H₂O and 0.8 g of FeCl₂.4H₂O were dissolved in 25 mL of ultrapure water under nitrogen atmosphere.
- 240 mL of graphene oxide solution was added to the solution and stirred at 80 °C for 1 h.
- 10 mL of 28 wt % ammonium hydroxide added to the solution and stirred for 30 min and kept cooled.
- The Fe₄O₃–graphene oxide nanoparticles were recovered by magnetic separation, washed, and dried in a vacuum at 60 $^{\circ}$ C for 24 h.

20

Fe_4O_3 -graphene oxide- β -CD

- 0.1 g of Fe₄O₃-graphene oxide was sonicated in 20 mL of 0.01 M phosphate buffer for 30 min.
- 70 mg of 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 30 mg of N-Hydroxysuccinimide were added to the solution and stirred for 1 h.
- 20 mg of amino-β-CD was dissolved in 10 mL of ultrapure water.
- The solutions were mixed and incubated for 24 h.
- The Fe₄O₃-graphene oxide- β -CD nanoparticles were recovered, washed, and dried in a vacuum at 60 °C for 24 h.

Magnetic copper-based metal-organic framework

- 0.15 g of Fe₄O₃-graphene oxide-β-CD nanoparticles were dispersed in 20 mL of 20 mM mercaptoacetic acid/ethanol solution and shaken for 1 h.
- The product was separated magnetically and washed.
- The Fe₄O₃-graphene oxide- β -CD nanoparticles were added to a solution of 120 mL of dimethylformamide/ethanol solution (v/v, 1/1) and 750 mg of 1, 3, 5-Benzenetricarboxylic acid.
- The mixture was stirred for 3 h.
- 1290 mg of Cu(CH₃COO)·H₂O was dissolved in 60 mL of ultrapure water and added to the solution.
- 0.75 mL of triethylamine was added dropwise and stirred for 3 h.
- The product was separated by magnetic decantation, washed, and dried in a vacuum at 80 °C for 24 h.