Electronic Supplementary Material

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn-air batteries Cai-Yue Wang*, Meng-Qi Gao*, Cheng-Cai Zhao, Li-Min Zhao, Hui Zhao (🖂)

School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, Shandong, China

E-mail: <u>zhaohui@lcu.edu.cn</u>

Fig. S1. FESEM image of the as-synthesized $Co_2P@NC$ (a), $Co_2P/Ni_3P@NC-0.2$ (b), $Co_2P/Ni_3P@NC-0.5$ (c), $Co_2P/Ni_3P@NC-0.2$ (d).

Fig. S2. FESEM image (a) and EDS elemental mapping images (b-g) of the $Co_2P/Ni_3P@NC-0.2$.

Fig. S3. Resistance tests of catalysts.

Fig. S4. Pore size distributions of the as-synthesized samples.

The XPS fitting standard is as follows. First, for the p, d and f levels, the intensity ratio of their sub levels (such as $P_{3/2}$ and $P_{1/2}$) is certain ($P_{3/2}$: $P_{1/2} = 2:1$). Second, for the energy levels (p, d, f) with energy level splitting, the distance between the two orbitals is basically fixed. Third, for the splitting orbits of the same element, the half peak width should be as close as possible.

Fig. S5. High-resolution XPS spectra of C 1s (a), Co 2p (b), N 1s (c) and P 2p (d) of $Co_2P@NC$ catalyst.

Fig. S6. High-resolution XPS spectra of C 1s (a), Co 2p (b), N 1s (c), Ni 2p (d) and P 2p (e) of Co₂P/Ni₃P@NC-0.5 catalyst.

Fig. S7. High-resolution XPS spectra of C 1s (a), Co 2p (b), N 1s (c), Ni 2p (d) and P 2p (e) of Co₂P/Ni₃P@NC-1 catalyst.

Fig. S8. XPS survey spectra of the as-synthesized samples.

Table S1. The total Co		$\mathcal{L}, \mathcal{O}, \mathcal{N}, \mathcal{O}$), INI allu F	of catalysis).	
catalyst	С	0	Ν	Со	Ni	Р
	(at.%)	(at.%)	(at.%)	(at.%)	(at.%)	(at.%)
Co ₂ P @NC	74.37	13.69	4.19	4.71	0	3.03
Co ₂ P/Ni ₃ P@NC-0.2	74.22	14.16	4.37	4.45	0.97	1.84
Co ₂ P/Ni ₃ P@NC-0.5	75.17	13.27	4.7	3.82	1.23	1.82
Co ₂ P/Ni ₃ P@NC-1	72.59	14.6	4.4	3.90	2.76	1.75

Table S1. The total contents of C, O, N, Co, Ni and P of catalysts.

Potential/(V vs RHE) Fig. S9. CV curves of Co₂P@NC, Co₂P/Ni₃P@NC-0.5 and Co₂P/Ni₃P@NC-1.

Fig. S10. EIS of fabricated catalysts for OER in O₂-saturated 0.1M KOH.

Fig. S11. LSV curves of fabricated catalysts for OER in O₂-saturated 0.1M KOH.

Fig. S12. Specific capacity of the $Co_2P/Ni_3P@NC-0.2$ and Pt/C-based Zn-air batteries.

Table S2.	Comparison	of ORR	catalytic	performances	between	Co ₂ P/Ni ₃ P@	NC-0.2
and previo	ously reported	transition	n metal-ba	ased materials	•		

Catalyst	Catalyst	Electrolyte	Onset	Half-wave	Electron	Reference
	loading		potential	potential	transfer	
	(mg		(V,	(V,	number	
	cm ⁻²)		vs.RHE)	vs.RHE)	<i>(n)</i>	
Co ₂ P/Ni ₃ P@NC-0.2	0.255	0.1M	0.90	0.80	3.91	This
		КОН				work
CoP/CN/Ni	0.41	0.1M		0.80	3.6~3.8	1
		КОН				
Fe-NiCoP@C	1.64	0.1M	0.81		3.75	2
		КОН				
Co@WC _{1-x} /NCNT	0.56	0.1M	0.91	0.81	3.89	3
		КОН				
Co ₂ P/CoNPC	0.255	0.1M	0.963	0.843	3.87	4
		КОН				
Co/SiO ₂ /N-C (900)	0.46	0.1M	0.90	0.81	3.78	5
		КОН				
MnO/Co/PGC	0.51	0.1M	0.95	0.78	N.A.	6
		KOH				

Table S3. Comparison of the primary Zn-air batteries for several recently reported highly active transition metal–based catalysts.

Catalyst	Electrolyte	Open	Peak	Charge-discharge	Cycling	Ref.
		circuit	power	current density	tests	
		voltage	density	$(mA cm^{-2})$		
		(V)	(mW			

			cm ⁻²)			
Co ₂ P/Ni ₃ P@NC-0.2	6M KOH	1.386	95	10	249	This
					cycles;	work
					166 h	
CoP	6M KOH	1.34	61	10		7
Co/SiO ₂ /N-C	6M KOH	1.41	138.2	5	600	5
					cycles;	
					400 h	
CoP _x @CNS	6M KOH	1.40	110	5	400	8
					cycles;	
					130 h	
CoO-NSC-900	6M KOH	1.4	~67	10	60 h	9
Al, P-codoped	6M KOH	1.436	89.1	10	150	10
Co ₃ O ₄ /NF					cycles;	
					3000 min	
FeNi@N-CNT/NCS	6M KOH	1.49	103	10	120	11
					cycles; 40	
					h	

References:

1. Chen T, Ma J, Chen S Y, Wei Y M, Deng C S, Chen J C, Hu J Q, Ding W P. Construction of heterostructured CoP/CN/Ni: Electron redistribution towards effective hydrogen generation and oxygen reduction. Chemical Engineering Journal, 2021, 415: 129031

2. Kang Y, Wang S, Zhu S Q, Gao H X, Hui K S, Yuan C Z, Yin H, Bin F, Wu X L, Mai W J, et al. Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium–air battery. Applied Catalysis B: Environmental, 2021, 285: 119786

3. Cai J N, Zhang X F, Yang M X, Shi Y D, Liu W K, Lin S. Constructing $Co@WC_{1-x}$ heterostructure on N-doped carbon nanotubes as an efficient bifunctional electrocatalyst for zinc-air batteries Journal of power sources, 2021, 485: 229251

4. Liu H T, Guan J Y, Yang S X, Yu Y H, Shao R, Zhang Z P, Dou M L, Wang F, Xu Q. Metal–organic-framework-derived Co₂P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Advanced Materials, 2020, 32(36): 2003649

5. Guo X T, Zheng S S, Luo Y Q, Pang H. Synthesis of confining cobalt nanoparticles within SiO_x /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries, Chemical Engineering Journal, 2020, 401: 126005

6. Lu X F, Chen Y, Wang S B, Gao S Y, Lou X W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries. Advanced Materials, 2019, 31(39): 1902339

7. Li H, Li Q, Wen P, Williams T B, Adhikari S, Dun C C, Lu C, Itanze D, Jiang L, D L Carroll. et al. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc–air battery. Advanced Materials, 2018, 30(9): 1705796

8. Hou C C, Zou L L, Wang Y, Xu Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc–air batteries. Angewandte Chemie International Edition, 2020, 132(48): 21544–21550

9. Chen S, Chen S, Zhang B H, Zhang J T. Bifunctional oxygen electrocatalysis of N, S-codoped porous carbon with interspersed hollow CoO nanoparticles for rechargeable Zn–air batteries. ACS Applied Materials & Interfaces, 2019, 11(18): 16720–16728

10. Lv X W, Liu Y P, Tian W W, Gao L J, Yuan Z Y. Aluminum and phosphorus codoped "superaerophobic" Co_3O_4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries. Journal of Energy Chemistry, 2020, 50: 324–331

11. Ren J T, Chen L, Wang Y S, Tian W W, Gao L J, Yuan Z Y FeNi nanoalloys encapsulated in N-doped CNTs tangled with N-doped carbon nanosheets as efficient multifunctional catalysts for overall water splitting and rechargeable Zn–air batteries. ACS sustainable Chemistry & Engineering, 2020, 8(1): 223–237