Electronic Supplementary Material

A density functional theory study of methane activation on MgO supported Ni_9M_1 cluster: Role of M on C–H activation

Juntian Niu (🖂)¹, Haiyu Liu¹, Yan Jin¹, Baoguo Fan¹, Wenjie Qi², Jingyu Ran³

1 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

2 Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400050, China

3 Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China

E-mail: juntianniu@163.com

Figure S1 Density of states of *d*-band for doping atom M in the isolated catalysts. The blue dash line represents the Fermi level.

Figure S2 The relationship between *d*-band center of doping atom M and adsorption energy of CH₄ molecule.

	Ni	Fe	Со	Cu	Pd	Pt	
CH ₄ (g)+	-104221.88	-103730.59	-103908.74	-104346.15	-103665.58	-103586.76	
Catalysts							
(isolated)							
IS(CH ₄ ads)	-104221.90	-103732.67	-103910.36	-104346.08	-103666.57	-103587.96	
TS(CH ₃ H)	-104221.35	-103732.26	-103909.74	-104344.84	-103665.63	-103587.17	
FS(CH ₃ +H)	-104222.03	-103732.94	-103910.48	-104345.31	-103666.25	-103587.90	

 Table S1 Energies of the IS, TS and FS states for each catalyst (eV).

Table S2 Mulliken atomic charges (e) for every element in Ni_9M_1 clusters.

	М	Ni1	Ni2	Ni3	Ni4	Ni5	Ni6	Ni7	Ni8	Ni9	Total
Fe	0.07	-0.24	-0.23	-0.23	-0.23	0.03	0.03	0.04	0.03	-0.47	-1.47
Co	0.02	-0.24	-0.23	-0.24	-0.23	0.05	0.05	0.05	0.05	-0.46	-1.18
Ni	-0.13	-0.22	-0.22	-0.22	0.03	0.04	0.03	0.03	-0.41	-0.04	-1.11
Cu	-0.16	-0.24	-0.24	-0.24	-0.23	0.07	0.08	0.07	0.07	-0.25	-1.07
Pd	-0.37	-0.24	-0.24	-0.24	-0.23	0.13	0.13	0.13	0.13	-0.38	-1.18
Pt	-0.41	-0.23	-0.22	-0.23	-0.22	0.13	0.13	0.13	0.11	-0.43	-1.24
Pt	-0.37	-0.24	-0.24	-0.24	-0.23	0.13	0.13	0.13	0.13	-0.38	-1.2