Electronic Supplementary Material

Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release

Li Chen^{1,2,3}, Yao Xiao², Zhiming Zhang², Chun-Xia Zhao⁴, Baoling Guo $(\boxtimes)^1$, Fangfu Ye $(\boxtimes)^{3,5}$, Dong Chen $(\boxtimes)^{2,6}$

1 Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China

2 Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

3 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China

4 Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

6 College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

E-mails:	baolingguo@sina.com	(Guo	B);	fye@iphy.ac.cn	(Ye	F);
chen_dong@zju.edu.cn (Chen D)						

Calculation of the gyration radius of PEG

The gyration radius R_g of PEG chains (HO(CH₂CH₂O)_nH) in a good solvent is empirically calculated by

$$R_g=0.181*n^{0.58}$$
 nm,

where n is the number of EG monomers in each PEG chain.

For PEG chains with a molecular weight of 6000 g/mol in water, the number of EG monomers in each PEG chain is

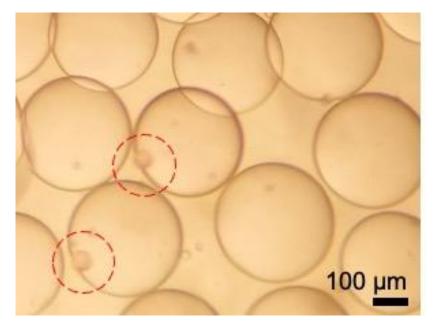
n=(6000-18)/44=135.95~136,

and the radius of gyration is

 $R_g=0.181*n^{0.58}\approx 0.181*136^{0.58}\approx 3.13$ nm.

Calculation of the thickness of ultrathin-shell double emulsions

The shell thickness L of the ultrathin-shell double emulsion is calculated by using the method reported in the literature (ChemPhysChem 2017, 18, 1). When a W/O/W double emulsion ruptures and becomes a O/W single emulsion, the volume of oil in


the O/W single emulsion is equal to the volume of oil in the shell of the double emulsion. Therefore, the relation between the size of single emulsion R_s , the size of double emulsion R_d and the shell thickness L of double emulsion is

$$4\pi R_d^3/3 - 4\pi (R_d - L)^3/3 = 4\pi R_s^3/3$$

and thus

$$L=R_d-(R_d^3-R_s^3)^{1/3}$$
.

For ultrathin-shell double emulsions generated at constant flow rates of 200 μ L/h, 400 μ L/h and 10000 μ L/h for the inner, middle and outer phases, respectively, the size of W/O/W double emulsions is R_d ~325 μ m, as shown in **Fig. S1**. When W/O/W double emulsions rupture due to shaking, they become O/W single emulsions, and the size of O/W single emulsions is R_s~52 μ m. Therefore, the shell thickness of the ultrathin-shell double emulsion is L~383 nm.

Fig. S1 Ultrathin-shell double emulsions generated at constant flow rates of 200 μ L/h, 400 μ L/h and 10000 μ L/h for the inner, middle and outer phases, respectively. The size of W/O/W double emulsions is R_d~325 μ m. When W/O/W double emulsions rupture due to shaking, they become O/W single emulsions (marked by red dotted circles). The size of O/W single emulsions is R_s~52 μ m. The volume of oil in the O/W single emulsions is equal to the volume of oil in the shell of the double emulsions. Therefore, the shell thickness of the ultrathin-shell double emulsion is L~383 nm.