Electronic Supplementary Material

Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like

hydrocarbons on carbon encapsulated Ni-Sn intermetallic compounds with methanol as hydrogen donor

Haonan Shi¹, Xiaoyu Gu¹, Yinteng Shi¹, Dandan Wang¹, Sihao Shu¹, Zhongze Wang¹,

Jixiang Chen $(\boxtimes)^1$

1 Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department

of Catalysis Science and Engineering, School of Chemical Engineering and

Technology, Tianjin University, Tianjin 300350, China

E-mail: jxchen@tju.edu.cn

Synthesis of supported catalysts

(1) Active carbon (AC) supported Ni and Ni₃Sn IMC

Ni/AC and Ni₃Sn₂ IMC/AC catalysts were prepared via the wetness impregnation method. The nominal loading of Ni was 15 wt.% and nominal Ni/Sn molar ratio was 3/1.8. The active carbon (>200 mesh) was first dried at 120 °C for 24 h. Then, it was impregnated with the Ni(NO₃)₂ ethanol solution for preparing Ni/AC, or the Ni(NO₃)₂ and dibutyltin dilaurate ($C_{32}H_{64}O_4Sn$) isopropyl alcohol solution for preparing Ni₃Sn₂ IMC/AC-1, or the Ni(NO₃)₂ and SnCl₂ ethanol solution for preparing Ni₃Sn₂ IMC/AC-2. The resulting slurry were placed at room temperature for 48 h, and further dried at 120 °C for 12 h. Then, the precursors were reduced at 500 °C in a 100 mL/min H₂ flow for 2 h with a ramping rate of 10 °C/min. After that, the reduced samples were passivated in a 320 mL/min 0.5 vol.% O₂/N₂ flow for 4 h.

(2) Al₂O₃ supported Ni and Ni₃Sn IMC

Ni/Al₂O₃ and Ni₃Sn₂ IMC/Al₂O₃ precursors were synthesized via the co-precipitation method. The nominal loading of Ni was 20 wt.% and nominal Ni/Sn molar ratio was 3/1.8. Solution A is composed of metal salts (Ni(NO₃)₂ and Al(NO₃)₃ for Ni/Al₂O₃; Ni(NO₃)₂, SnCl₂ and Al(NO₃)₃ for Ni₃Sn₂ IMC/Al₂O₃) with a total cationic concentration of 1 mol/L. Solution B is the alkaline solution with the NaOH concentration of 2 mol/L and the Na₂CO₃ concentration of 1 mol/L. The solution A and solution B were dropped slowly into the deionized water under vigorous stirring at 30 °C and a pH value of 10±0.05. The resulting participate was aged at 65 °C for 12 h. After washing and drying at 120 °C for 12 h, the resulting samples were calcined at 500 °C for 5 h, followed by the reduction at a certain temperature (500 °C for Ni/Al₂O₃; 550 °C for Ni₃Sn₂ IMC/Al₂O₃) for 2 h in a 100 mL/min H₂ flow with a ramping rate of 10 °C/min. After that, the reduced samples were passivated in a 320 mL/min 0.5 vol.% O₂/N₂ flow for 4 h.

Equations

(S4)

 $NH_3 + CH_2O$ NH_2CH_2OH HN CH_2OH CH_2OH CH_2OH CH_2OH CH_2OH CH_2OH

(S5)

(S6)

Precursors	Ni(NO ₃) ₂ ·6H ₂ O/g	SnCl ₂ ·2H ₂ O/g
Ni@RF	3.268	0

Ni-Sn(3/1)@RF	3.268	0.846
Ni-Sn(3/1.7)@RF	3.268	1.437
Ni-Sn(3/1.8)@RF	3.268	1.521
Ni-Sn(3/2)@RF	3.268	1.691
Ni-Sn(1/1)@RF	3.268	2.537
Ni-Sn(3/4)@RF	3.268	3.382

Table S2. Summary of HTDO on Ni-based catalysts.

Feedstock	Reactor	Catalyst	Conditions	H ₂ O:Feedstock:C atalyst/(g:g:g)	Conversi on	Yield	Referen ce
Methyl palmitate	Batch	15 wt% Ni-Sn@C Ni:Sn=3:1.8 (mole ratio)	330 °C;6 h methanol	80:20:3 0.6 g catalyst	99 C%	88.1 C% n-C ₁₅ ; 4.7 C% n-C ₁₆	This work
Methyl palmitate	Batch	15 wt% Ni-Co@C Ni:Co=1:1 (mole ratio)	330 °C;6 h methanol	40:10:1 0.4 g catalyst	100 C%	15.7 C% C ₆ -C ₁₄ 73.5 C% C ₁₅	[1]
Methyl palmitate	Batch	Ni/La ₂ O ₃ Ni:La=1:1 (mole ratio)	315 °C;2 h methanol	8:4:1 1 g catalyst	100 C%	25.6 C% C ₆ -C ₁₄ 45.5 C% C ₁₅	[2]
Oleic acid	Micro-b atch	40 wt% Ni-Cu/Al ₂ O ₃ Ni:Cu=2:1 (weight ratio)	330 °C;1 h methanol	100:10:3 15 mg catalyst	100 C%	92.7 C% C ₁₇	[3]
Oleic acid	Micro-b atch	20 wt% Ni-Cu/ZrO ₂ Ni:Cu=2:1 (weight ratio)	370 °C;5 h methanol	100:10:3 15 mg catalyst	100 C%	92.5 C% C ₁₇	[4]
Canola Oil	Batch	Ni/C	315 °C; 12 h 1.95 MPa external H ₂	40:10:1 6.15 g catalyst	100 C%	51.9 wt% C ₁₇	[5]
Palmitate acid	Batch	10 wt% Ni/ZrO ₂	300 °C; 6 h 5.52 MPa external H ₂	9:1:1 0.5 g catalyst	100 C%	23.8 C% C ₁₅ 30.8 C% C ₈ -C ₁₄ 18.2 C% CH ₄	[6]
Palmitate	Batch	10 wt%	300 °C; 6 h	9:1:1	63 C%	16.1 C% C ₁₅	[6]

acid		Ni/ZrO ₂	5.52 MPa N ₂	0.5 g catalyst		22.1 C% C ₈ -C ₁₄ 11 C% CH ₄	
Oleic acid	Micro-b atch	6.66 wt% NiWC/Al-SB A-15 Ni:W=2:1(wei ght ratio)	400 °C; 4 h glycerol	321:22:5 10 mg catalyst	97.3%	5.2 mol% heptadecane 12 mol% heptadecene 73 mol% stearic acid	[7]
Oleic acid	Micro-b atch	6.67 wt% NiNbC/Al-SB A-15 Ni:Nb=2:1(we ight ratio)	400 °C; 4 h glycerol	321:22:5 10 mg catalyst	~80%	0.3 mol% heptadecane 43 mol% heptadecene 33 mol% stearic acid	[7]

Table S3. Conversion of methyl palmitate and hexadecanol on Ni-Sn(1/1)@C

Entry	Condition	Yield/%	Gas phase composition/mmol%
1	4 g methyl palmitate;	n-C ₁₅ : 9.3	H ₂ : 71.3
	93.6 mmol methanol;	n-C ₁₆ : 6.1	CO: 0.7
	8 mL D.I. water;	hexadecanol: 41.5	CO ₂ : 26.8
	0.4 g catalyst; 330 °C; 6 h		CH4: 1.2
2	4 g methyl palmitate;	n-C ₁₅ : 11.6	H ₂ : 71.0
	93.6 mmol methanol;	n-C ₁₆ : 16.0	CO: 0.8
	8 mL D.I. water;	hexadecanol: 41.5	CO ₂ : 27.0
	0.4 g catalyst; 330 °C;12 h		CH ₄ : 1.2
3	3.59 g hexadecanol;	n-C ₁₅ : 11.8	H ₂ : 50
	8 mL cyclohexane;	n-C ₁₆ : 17.2	CO ₂ : 50
	0.4 g catalyst; 330 °C; 2 h	palmitic acid: 9.1	

Fig. S1. H₂-TPR profiles of passivated Ni-Sn(3/1.8)@C, passivated Ni₃Sn₂ IMC/Al₂O₃ and C.

Fig. S2. SEM images of RF resin-based precursors and RF derived carbon-encapsulated Ni and Ni-Sn catalysts before and after in-situ HTDO at 330 °C for 6 h.

Fig. S3. SEM images of C-RF.

Fig. S4. pH value during preparing Ni-Sn(3/1.8)@RF microspheres via one-pot extended Stöber method.

Fig. S5. XRD patterns of fresh and used Ni-Sn(3/1.8)@C at varied reaction time. Reaction condition: 330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4 g catalyst

Fig. S6. (a, b) In-situ HTDO performance of phenolic resin derived carbon (C), carbon supported

and Al₂O₃ supported Ni and Ni₃Sn₂ IMC catalysts; (c, d) XRD patterns of carbon supported and Al₂O₃ supported Ni and Ni₃Sn₂ IMC catalysts; (e, f, g, h) TEM images of fresh and used carbon supported Ni₃Sn₂ IMC catalysts

Reaction condition: 330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4 g catalyst, 6 h

The average particle sizes of Ni_3Sn_2 IMC in fresh and used Ni_3Sn_2 IMC/AC-1 are 27.8 nm and 59.4 nm, respectively, and these in fresh and used Ni_3Sn_2 IMC/AC-2 are 71.9 nm and 92.8 nm, respectively. Clearly, compared with those in Ni_3Sn_2 @C, the carbon supported Ni_3Sn_2 IMC particles are very larger, and their sintering is more serious during *in-situ* hydrothermal deoxygenation.

Fig. S7. Pore size distributions of Ni@C and Ni-Sn(x/y)@C.

Fig. S8. In-situ HTDO performance of methyl palmitate over Ni-Sn (3/1.8) @C with varied catalyst dosage. (a) Conversions of methanol and methyl palmitate, yields of products and carbon balance; (b) Moles of gas phase products.

Reaction conditions: 330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4/0.6 g catalyst, 6 h

Fig. S9. *In-situ* HTDO performance of methyl palmitate over Ni-Sn (3/1.8) @C with varied methanol dosage. (a) Conversions of methanol and methyl palmitate, yields of products and carbon balance; (b) Moles of gas phase products.

Reaction conditions:330 °C, 4 g methyl palmitate, 0~3 g methanol, 8 g water, 0.4 g catalyst, 6 h

Fig. S10. TG-DSC curves of fresh and used Ni-Sn(3/1.8)@C catalysts.

Fig. S11. N₂ adsorption-desorption isotherms of fresh and used Ni-Sn(3/1.8)@C.

Fig. S12. H₂-TPR profiles of Ni-Sn(3/1.8) @C after treated with 0.4 vol.% H₂O/H₂ at 330 °C

Fig. S13. *In-situ* HTDO performance of methyl palmitate over Ni-Sn (3/1.8) @C at varied temperature. (a) Conversions of methanol and methyl palmitate, yields of products and carbon balance; (b) Moles of gas phase products.

Reaction conditions:300/330 °C, 4 g methyl palmitate, 3 g methanol, 8 g water, 0.4 g catalyst, 6 h

Fig. S14. Gibbs free energy change with temperature and pressure. (a) hydrogenation of hexadecanal to hexadecanol and (b) decarbonylation of hexadecanal to n-pentadecane

Reference

 Shi Y, Ai L, Shi H, Gu X, Han Y, Chen J. Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Frontiers of Chemical Science and Engineering, 2022, 16(4): 443-460

2. Ai L, Shi Y, Han Y, Chen J. In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO₃ perovskite. Reaction Kinetics Mechanisms and Catalysis, 2021, 133(1): 209-227

3. Zhang Z, Yang Q, Chen H, Chen K, Lu X, Ouyang P, Fu J, Chen J. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20(1): 197-205

4. Zhang Z, Chen H, Wang C, Chen K, Lu X, Ouyang P, Fu J. Efficient and stable Cu-Ni/ZrO₂ catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 2018, 230: 211-217

 Ndubuisi R, Sinichi S, Chin Y, Diosady L. Diesel precursors via catalytic hydrothermal deoxygenation of aqueous canola oil emulsion. Journal of the American Oil Chemists Society, 2019, 96(5): 535-543

 Miao C, Marin-Flores O, Davidson S, Li T, Dong T, Gao D, Wang Y, Garcia-Pérez M, Chen S. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel, 2016, 166: 302-308
Al B, Salley S, Ng K. Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15. Applied Catalysis A: General, 2015, 498: 32-40