Electronic Supplementary Material

Optimizing iodine capture performance by metal-organic framework containing with bipyridine units

Xinyi Yang^{1,2}, Xiaolu Liu², Yanfang Liu², Xiao-Feng Wang $(\boxtimes)^1$, Zhongshan Chen², Xiangke Wang $(\boxtimes)^2$

School of Chemistry and Chemical Engineering, University of South China, Hengyang
421001, China
College of Environmental Science and Engineering, North China Electric Power University,
Beijing 102206, China
E-mails: xfwang518@sina.cn (Wang X-F); xkwang@ncepu.edu.cn (Wang X)

Chemicals and instruments

All chemicals were sourced from commercial suppliers and used without further purification. Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku SmartLab SE X-ray diffractometer equipped with a Cu K α source. Elemental analysis data were collected on a UNICUBE elemental analyzer. BET surface areas were determined from N₂ adsorption/desorption isotherms collected at 77 K using a Micromeritics TriStar II. Scanning electron microscopy (SEM) images were recorded on a Legulus 8220 Scanning Electron Microscope. X-ray photoelectron spectroscopy (XPS) analyses were performed using a Thermo Scientific ESCALAB 250Xi spectrometer, equipped with a monochromatic Al K α X-ray source. Fourier transform infrared spectra (FT-IR) were recorded on a SHIMADZU IRTracer-100. Thermogravimetric analysis (TGA) data was obtained by heating the sample from 25 °C to 800 °C using a STA 2500 under 10K/min N₂ atmosphere. Raman spectra were collected on a high-resolution confocal Raman system (LabRam HR800, Horiba Jobin Yvon, Japan) using 514 nm lasers.

Materials characterization

Fig. S1 Pore size distribution plot for Th-BPYDC from N₂ isotherms measured at 77 K.

Fig. S2 Pore size distribution plot for Th-UiO-67 from N₂ isotherms measured at 77 K.

Fig. S3 UV-Vis absorption spectra of iodine solutions in the presence of Th-BPYDC at different time.

Fig. S4 UV-Vis absorption spectra of iodine solutions in the presence of Th-UiO-67 at different time.

Fig. S5 FT-IR of Th-BPYDC after 4 cycles of iodine adsorption/release in cyclohexane.

Fig. S6 PXRD of Th-UiO-67 after iodine vapor release in ethanol.

Fig. S7 TGA diagrams of Th-BPYDC and Th-UiO-67 after adsorption of iodine in cyclohexane solution.

Fig. S8 Full survey XPS spectra of Th-BPYDC after adsorption of iodine.

Fig. S9 Full survey XPS spectra of Th-UiO-67 after adsorption of iodine.

Fig. S10 The Raman spectra for Th-BPYDC after iodine adsorption.

Fig. S11 The Raman spectra for Th-UiO-67 after iodine adsorption.

Table S1. Elemental analysis of Th-UiO-67 and Th-BPYDC.

Materials	Element content			
Waterials	C(%)	N(%)	H(%)	
Th-UiO-67	30.34	1.01	2.365	
Th-BPYDC	31.60	9.35	3.900	

Table S2. Langmuir and Freundlich adsorption parameters for iodine adsorption on different adsorbents in cyclohexane.

Materials		Langmuir isotherm			Freundlich isotherm		
	K_L	$q_m (\mathrm{mg/g})$	R^2	K_F	1/n	R^2	
Th-UiO-67	0.2821	229.3	0.9626	78.61	0.1618	0.9343	
Th-BPYDC	0.3196	481.2	0.9853	125.4	0.1524	0.9577	

Table S3. Summary of adsorption kinetic parameters for iodine adsorption on different adsorbents in cyclohexane.

Materials $\begin{array}{c} q_{e,exp} \\ (mg/g) \end{array}$	a	Pseudo-first-order model		Pseudo-second-order model			
	$q_{e,exp}$ (mg/g)	q _{1,cal} (mg/g)	K_1 (min ⁻¹)	R^2	q2,cal (mg/g)	K ₂ (mg/g/min)	R^2
Th-UiO-67	93.84	91.1534	0.4306	0.9980	102.52	0.00578	0.9983
Th-BPYDC	98.53	87.76	1.7041	0.9477	98.80	0.02239	0.9912