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Experimental methods 

Materials 

Cyanuric chloride (99%), piperazine (99%) and triethylamine (99.5%), iron (III) chloride 

(98%) were obtained from Aladdin Reagent Co, Ltd, China. Acetonitrile (AR, ≥ 99.0%), 

triethylamine (AR, ≥ 99.0%), acetone (AR, ≥ 99.0%), ethanol (99.5%), H2SO4 (AR, 95.0 ~ 

98.0%) and zinc acetate dihydrate (AR, ≥ 99.0%) were purchased from Sinopharm Chemical 

Reagent Co, Ltd, China. Potassium hydroxide (KOH, GR, ≥ 90%) and nafion solution (5 wt%) 

were purchased from Sigma-Aldrich Co. Ltd. 20 wt% commercial Pt/C catalyst was 

purchased from Alfa Aesar chemical Co, Ltd, China. All these chemicals were used as 

received without further purification unless specified. Deionized water was produced by a 

laboratory water maker at 25 °C (18.2 MΩ·cm−1 resistivity) and used throughout the 

experiments. 

 

Characterizations 

The solid-state 13C nuclear magnetic resonance spectrum was confirmed on an 

AvanceIII400MHz instrument (Germany) with tetramethylsilane (TMS) as an internal 

standard. Fourier transform infrared spectrometer (FT-IR) spectra were measured utilizing a 

Perkin-Elmer Instrument. The X-ray photoelectron spectroscopy (XPS) was recorded on a 

Karatos Axis ULTRA spectrometer. The nitrogen adsorption and desorption isotherms were 

conducted at the liquid nitrogen (77 K) with a QUADRASORB SI automated surface area and 

pore size analyzer device (Quantachrome Corporation, USA), the specific surface area (SSA) 

of CTPS and resultant catalysts were received from the adsorption curves based on the 

Brunauer-Emmett-Teller (BET) equation and the calculation of pore-size distribution of 

samples were received, which were based on nonlocal density functional theory (DFT) 

equilibrium model. Before measurements, all the samples were outgassed at 120 °C in 

vacuum for 24 h. Raman spectra were carried out on a LabRAM ARAMIS system with a 

wavelength 633 nm laser. Powder X-ray diffraction (XRD) patterns of samples were received 

at an X-ray diffractometer on a Bruker D8 Advance. TGA was performed on TG 209 F1 from 

room temperature to 1000 °C in N2 atmosphere with a heating rate of 10 °C min−1. The 
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surface morphologies of the metal-coordinated polymer precursors and corresponding carbon 

catalysts were observed by field-emissions scanning electron microscopy (JEOL JSM-7500F) 

at an accelerating voltage of 5.0 kV. Transmission electron microscopy (TEM) was conducted 

through Talos F200S. 

 

Electrochemical measurements 

The ORR electrocatalytic activities of the catalysts were performed with CHI 660D 

electrochemical workstation in a standard three-electrode system using a graphite rod as the 

counter electrode, and the 5 mm diameter rotating disk electrode (RDE, Gamry Instruments, 

Inc.) loaded with catalysts as the working electrode. The catalyst ink was prepared by 

dispersing 5 mg of the catalysts into 350 µL of ethanol and 95 µL of Nafion solution (5 wt%). 

After sonication for 30 min, 5 µL catalyst ink was deposited onto the RDE (~290 µg cm-2 

mass loading) and dried at room temperature naturally. For comparison, commercial Pt/C 

catalysts were used as a reference under same condition. 

Rotating disk electrode (RDE) test: The ORR activities of catalysts were evaluated by 

cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at the rotation rate of 800, 

1200, 1600, 2000 and 2400 rpm, respectively, with O2-saturated 0.1 M KOH solution as the 

electrolyte. All the potentials are transformed into a reference hydrogen electrode (RHE) 

using the following equations: 

E (vs. RHE) = E �vs.
Ag

AgCl
� + 0.197 + 0.059 × pH 

The polarization curves were carried out in 0.1 M O2-saturated KOH electrolyte with a 

potential range from -0.2 V to 1.2 V (vs. RHE) at a rotation speed of 1600 rpm. Before the 

RDE test, the electrodes were scanned for 100 CV cycles with a scan rate of 100 mV s-1 in 

O2-saturated 0.1 M KOH to activate the catalyst. The electron transfer number (n) was 

calculated by linear fitting using the Koutecky-Levich (K-L) equation: 
1
𝑗𝑗

=
1

𝐵𝐵𝜔𝜔1/2 +
1
𝑗𝑗𝐾𝐾

 

𝐵𝐵 = 0.62𝑛𝑛𝑛𝑛𝐶𝐶0(𝐷𝐷0)2/3𝑣𝑣−1/6 

where j is the measured current density, F is the Faraday constant (F = 96485 C cm-1), C0 is 

the bulk concentration of O2 (C0 = 1.2*10-3 M), D0 is the diffusion coefficient of oxygen (D0 
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= 1.9*10-5 cm s-1) in a 0.1 M KOH solution, v is the kinetic viscosity of the electrolyte (0.01 

cm2 s-1), and k is the electron transfer rate constant. The value of B can be obtained from the 

slope of the K-L equation, and ω is the rotation rate. Thus, when B is known, the electron 

transfer number (n) can be calculated from the equation. 

Rotating ring-disk electrode (RRDE) test: The catalytic performance of the catalyst towards 

ORR was performed via cyclic voltammetry (CV) at a scan rate of 50 mV s-1 and linear sweep 

voltammetry (LSV) at a scan rate of 5 mV s-1 on a rotating ring-disk electrode (RRDE), and 

ring electrode was also scanned. The yield of hydrogen peroxide and electron transfer number 

(n) were obtained from the equations as follows: 

H2O2 (%) = 200*Ir/N/(Id+Ir/N) 

n = 4*Id/(Id+Ir/N) 

in which Id and Ir represent the disk and ring currents, and N is corresponding to the ring 

collection efficiency, which is provided as 0.37 by manufacture. 

 

Zn-air battery measurements 

The conventional Zn-air batteries were fabricated using a self-made acrylic resin cell and 

the measurements were conducted under ambient conditions. A hydrophobic carbon paper 

was provided as the current collector. A polished zinc plate (0.20 mm thickness) and 6.0 M 

KOH solution containing 0.2 M zinc acetate are served as the anode and electrolyte, 

respectively. The cathode was prepared with loading Fe/N@CNF-800 or commercial Pt/C 

catalysts on the 1 × 1 cm carbon cloth (~1.0 mg cm-2). 

 

Fig. S1. Solid-state 13C NMR spectrum of CTP. 
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Fig. S2. FT-IR spectrum of Fe-CTP and CTP. 

 

 
Fig. S3. TGA curves of the Fe-CTP@NaCl and CTP. 

 

 

 

Fig. S4. SEM images of Fe-CTP at low and high magnifications, respectively. 
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Fig. S5. SEM images of (a-c) Fe/N@CNF-700, (d-f) Fe/N@CNF-800, (g-i) Fe/N@CNF-900 

at low and high magnifications, respectively. 

 
Fig. S6. HRTEM image of Fe/N@CNF-800. 
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Fig. S7. XRD patterns of the Fe/N@CNFs. 

 

 
Fig. S8. XPS survey of Fe/N@CNF-700, Fe/N@CNF-800 and Fe/N@CNF-900 catalysts. 

 

Fig. S9. High-resolution C 1s XPS spectra of Fe/N@CNF-800. 
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Fig. S10. The proportion of different doped-N types of Fe/N@CNF-800 catalyst. 

 

 

Fig. S11. Nitrogen adsorption/desorption isotherm of Fe/N@CNFs. 

 

Fig. S12. The pore size distribution of the Fe/N@CNFs. 
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Fig. S13. Tafel curves of the different samples from corresponding ORR LSV curves. 

 

 

Fig. S14. (a) H2O2 yields and (b) calculated electron-transfer numbers of the FeN@CNF-800 

derived from RRDE polarization curves in 0.1 M O2-saturated KOH solution, 1600 rpm. 

 

Fig. S15. (a) Chronoamperometric responses of Fe/N@CNF-800 and Pt/C catalysts upon 

addition of 1 M methanol, respectively. 
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Fig. S16. CV curves of the Fe/N@CNFs in 0.1 M H2SO4 at scan rate 50 mV s-1. 

 

Table S1. Elemental compositions of Fe/N@CNFs determined by XPS results. 

samples 
C 

[at%] 
N 

[at%] 
Fe 

[at%] 

Fe/N@CNF-700 77.24 14.54 1.21 

Fe/N@CNF-800 85.17 4.84 0.99 

Fe/N@CNF-900 91.03 4.11 0.51 

 
Table S2. Comparison of our Fe/N@CNF-800 catalyst with some reported Fe-based ORR 
catalysts in 0.1 M KOH electrolyte. 

catalysts 
Eonset 

(V vs.RHE) 
E1/2 

(V vs.RHE) 
JL 

(mA cm-2) 
Ref. 

Fe3C-FeN/NC-2 0.95 0.82 5.02 [1] 
Fe3C/Fe2O3@N-CNTs 0.97 0.88 6.01 [2] 

Fe-Zn-SA/NC 0.93 0.85 4.83 [3] 
FeCo-NPs/NC 0.91 0.82 5.15 [4] 

Fe-N/C-800 1.00 0.84 5.19 [5] 
Ag-CoFe@NC-700 0.96 0.83 5.31 [6] 

Fe-SASC 1.00 0.87 5.62 [7] 
Co3Fe7/N, Mn-PC 0.98 0.87 5.87 [8] 

Fe-NC/rOCNT 0.98 0.87 5.76 [9] 
Timb-Fe5-C 0.99 0.89 5.36 [10] 

FeFe-O-Fe-UP/CA 1.08 0.93 5.71 [11] 
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FeNC-NW 1.02 0.92 6.01 [12] 
meso-Fe-N-C 0.92 0.85 5.68 [13] 

Ni3Fe-GA1 0.93 0.80 4.52 [14] 
Fe20@N/HCSs 0.95 0.85 5.75 [15] 

Co3Fe7@Fe2N/rGO 0.95 0.79 5.41 [16] 
MPC@PhFe 0.99 0.86 5.33 [17] 

Fe/N@CNF-800 1.02 0.89 5.15 this work 

 

Table S3. Comparison of some recently reported Fe-based ORR catalysts in acid condition.  

Catalyst 
ORR Eonset 
(V vs.RHE) 

ORR E1/2 
(V vs.RHE) 

JL 
(mA cm-2) 

Electrolyte Ref. 

Fe-Zn-SA/NC 0.87 0.78 4.72 0.1 M HClO4 [3] 
HSAC/Fe-3 0.94 0.81 4.53 0.5 M H2SO4 [18] 
FeNC-NW 0.90 0.82 5.51 0.1 M HClO4 [12] 
HP-FeN4 0.95 0.80 5.78 0.1 M HClO4 [19] 

FeN4/HOPC-c-1000 0.90 0.78 4.52 0.5 M H2SO4 [20] 
Fe-N-C/FeN 0.89 0.78 8.81 0.1 M HClO4 [21] 

FeNC-BP 0.84 0.69 5.54 0.1 M H2SO4 [22] 
Co-Fe-S@NSRPC 0.86 0.80 5.01 0.5 M H2SO4 [23] 

NGM-800 0.86 0.78 4.24 0.1 M HClO4 [24] 
Fe/N@CNF-800 0.92 0.78 4.48 0.5 M H2SO4 This work 

Table S4. Comparison of the performance of Zn-air batteries with our Fe/N@CNF-800 
catalyst and Fe-based catalysts. 

air catalysts open-circuit voltage [V] power density [mW cm-2] Ref. 
SA-Fe/NC - 91 [25] 

Si-Fe/S/N-RH3 1.53 86 [26] 
A-Fe-NC 1.45 132 [27] 

Fe0.5Ni0.5@N 1.48 85 [28] 
CoFe-Co@PNC 1.46 153 [29] 
Co0.7Fe0.3@NC 1.45 86 [30] 

Fe-N-C/N-OMC 1.55 113 [31] 
CoFeP@C - 144 [32] 

FeS/Fe3C@NS 1.46 91 [33] 
SA-Fe-Nx-MPC 1.53 130 [34] 

Ni3FeN 1.55 - [35] 
Co/CoO@FeNC 1.42 133 [36] 
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Fe/Co-Nx-C 1.42 152 [37] 
FeNSC800 1.52 60 [38] 

HCSC-IV-H 1.43 105 [39] 
FeCo-NPC 1.49 93 [40] 

Fe/N@CNF-800 1.51 164 This work 
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