Electronic Supplementary Material

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO₂ layer

Yili Liu¹, Guoliang Che¹, Weizhong Cui¹, Beili Pang (⊠)¹, Qiong Sun¹, Liyan

Yu $(\boxdot)^1$, Lifeng Dong $(\boxdot)^{1,2}$

1 College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

2 Department of Physics, Hamline University, St. Paul 55104, USA

E-mails: <u>pangbl@qust.edu.cn</u> (Pang B); <u>liyanyu@qust.edu.cn</u> (Yu L); <u>donglifeng@qust.edu.cn</u> (Dong L)

Device structure	PCE/(%)	Ref.
FTO/c-TiO ₂ /m-TiO ₂ /CsPb _{1-x} Ag _x Br ₃ /carbon	6.92%	S1
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ : g-C ₃ N ₄ /carbon	8.00%	S2
FTO/TiO ₂ /CsPbBr ₃ /carbon	5.44%	S 3
FTO/TiO2/CsPbBr3-CsPb2Br5/Spiro-OMeTAD/Ag	8.34%	S4
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /MoS ₂ QDs/carbon	6.80%	S 5
FTO/c-TiO2/m-TiO2/CsPbBr3/BHJ/carbon	8.94%	S 6
FTO/ZnO/CsPbBr3-CsPb2Br5/PCBM/Ag	6.81%	S 7
FTO/c-TiO ₂ /CsPbBr ₃ /spiro-MeOTAD/Au	8.65	S 8
FTO/a-Nb2O5/CsPbBr3/CuPC/carbon	5.74	S 9
FTO/c-TiO ₂ /CsPbBr ₃ /carbon	7.81	S 10
FTO/c-TiO ₂ /CsPbBr ₃ /buffer layer/P3HT/Au	7.90	S11
FTO/TiO2/CsPb0.998Co0.002Br3/Spiro-OMeTAD/Au	8.57	S12
FTO/Sr-TiO ₂ /CsPbBr ₃ /Carbon	7.22	S13
FTO/c-TiO ₂ /m-TiO ₂ /InBr ₃ :CsPbBr ₃ /carbon	6.48	S14
FTO/SnO ₂ /CsPbBr ₃ @Cs ₄ PbBr ₆ /carbon	9.02	S15
FTO/c-TiO2/m-TiO2/GOQDs/CsPbBr3/carbon	9.16	This work

Table S1. Comparison of CsPbBr₃ PSCs with graphene materials and QDs.

S1. Chen S L, Liu X L, Wang Z, Li W H, Gu X Y, Lin J, Yang T Y, Gao X Y, Kyaw A K K. Defect passivation of CsPbBr₃ with AgBr for high-performance all-inorganic

perovskite solar cells. Advanced Energy and Sustainability Research, 2021, 2(6): 2000099

S2. Liu W W, Liu Y C, Cui C Y, Niu S T, Niu W J, Liu M C, Liu M J, Gu B, Zhang LY, Zhao K. All-inorganic CsPbBr₃ perovskite solar cells with enhanced efficiency by exploiting lone pair electrons via passivation of crystal boundary using carbon nitride $(g-C_3N_4)$ nanosheets. Materials Today Energy, 2021, 21: 100782

S3. Tak H J, Lee J H, Bae S, J J W. Surface-passivated CsPbBr₃ for developing efficient and stable perovskite photovoltaics. Crystals, 2021, 11(12): 1588

S4. Zuo X X, Chang K, Zhao J, Xie Z Z, Tang H W, Li B, Chang Z R. Bubble-template-assisted synthesis of hollow fullerene-like MoS_2 nanocages as a lithium ion battery anode material. Journal of Materials Chemistry A, 2016, 4(1): 51-58

S5. Duan J L, Dou D W, Zhao Y Y, Wang Y D, Yang X Y, Yuan H W, He B L, Tang Q W. Spray-assisted deposition of CsPbBr₃ films in ambient air for large-area inorganic perovskite solar cells. Materials today energy, 2018, 10: 146-152

S6. Du J, Duan J L, Duan Y Y, Tang Q W. Tailoring organic bulk-heterojunction for charge extraction and spectral absorption in CsPbBr₃ perovskite solar cells. Science China Materials, 2021, 64(4): 798-807

S7. Zhang X S, Jin Z W, Zhang J R, Bai D L, Bian H, Wang K, Sun J, Wang Q, Liu SZ. All-ambient processed binary CsPbBr₃–CsPb₂Br₅ perovskites with synergistic enhancement for high-efficiency Cs–Pb–Br-based solar cells. ACS applied materials & interfaces, 2018, 10(8): 7145-7154

S8. Li J, Gao R R, Gao F, Lei J, Wang H X, Wu X, Li J B, Liu H, Hua X D, Liu S Z. Fabrication of efficient CsPbBr₃ perovskite solar cells by single-source thermal evaporation. Journal of alloys and compounds, 2020, 818: 152903

S9. Zhao F, Guo Y X, Wang X, Tao J H, Jiang J C, Hu Z G, Chu J H. Enhanced performance of carbon-based planar CsPbBr₃ perovskite solar cells with room-temperature sputtered Nb₂O₅ electron transport layer. Solar Energy, 2019, 191: 263-271

S10. Liu L L, Yang S E, Liu P, Chen Y S. High-quality and full-coverage CsPbBr₃ thin films via electron beam evaporation with post-annealing treatment for all-inorganic perovskite solar cells. Solar Energy, 2022, 232: 320-327

S11. Zhu J H, Kottokkaran R, Sharikadze S, Gaonkar H, Poly L P, Akopian A, Dalal V L. Inorganic Perovskite Solar Cells with high voltage and excellent thermal and environmental stability. ACS Applied Energy Materials, 2022, 5(5): 6265-6273

S12. Hwang T Y, Choi Y, Song Y S, Emo N S A, Kim S, Cho H B, Myung N V, Choa Y H. A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES). Journal of Materials Chemistry C, 2018, 6(5): 972-979

S13. Cao X B, Zhang G S, Cai Y F, Jiang L, Chen Y, He X, Zeng Q G, Jia Y, Xing G C, Wei J Q. Enhanced performance of CsPbBr₃ perovskite solar cells by reducing the conduction band offsets via a Sr-modified TiO₂ layer. Applied Surface Science, 2020, 529: 147119

S14. Meng X W, Chi K L, Li Q, Feng B T, Wang H D, Gao T J, Zhou P Y, Yang H B,

Fu W Y. Fabrication of porous lead bromide films by introducing indium tribromide for efficient inorganic CsPbBr₃ perovskite solar cells. Nanomaterials, 2021, 11(5): 1253

S15. Liu C B, Zhang T, Li Z, Zhao B H, Ma X T, Chen Y L, Liu Z B, Chen H N, Li X Y. Crystallization kinetics engineering toward high-performance and stable cspbbr₃-based perovskite solar cells. ACS Applied Energy Materials, 2021, 4(10): 10610-10617

Figure S1. Cross section SEM images of perovskite film (a) without GOQDs and (b) with GOQDs.

Figure S2. TRPL spectra of the PSCs with and without GOQDs.

PSC devices	τ1/(ns)	f1/(%)	τ2/(ns)	f2/(%)	Tave /(ns)
Pristine	0.27	93.62	4.20	6.38	4.29
PSC with GOQDs	0.29	86.17	2.55	13.83	1.79

Table S2. TRPL key parameters of the PSC with and without GOQDs

Table S3. Hall Effect parameters of the CsPbBr₃ film with and without GOQDs

PSC devices	Resistivity /(Ω·cm)	Bulk concentration /(cm ⁻³)	Mobility/(cm ² V ⁻¹ s ⁻¹)
Pristine	2.48×10^{3}	2.45×10^{16}	9.65
PSC with	7.13×10^{2}	5 48×10 ¹⁹	15 97
GOQDs	7.13~10	5.40×10	15.77

Figure S3. XRD patterns of the PSCs with and without GOQDs.

Figure S4. PL spectra of TiO₂ films with and without GOQDs.

Table S4. Hall Effect parameters of the TiO_2 film with and without GOQDs.

TiO2 film	Resistivity /(Ω·cm)	Bulk concentration /(cm ⁻³)	Mobility /(cm ² V ⁻¹ s ⁻¹)
Pristine TiO ₂ film	4.46×10 ³	2.07×10 ¹²	66
TiO2 film with GOQDs	1.04	9.01×10 ¹⁶	67

Figure S5 (a) The absorption spectrum of TiO₂ electron transport layer with GOQDs and its corresponding Tauc plot (Inset). (b) The UPS characterization of TiO₂ electron transport layer with GOQDs.

Figure S6. XRD patterns of the PSCs with GOQDs freshly made and after storing in atmosphere for 8 days.