Electronic Supplementary Material

Rosin side chain type catalyst-free vitrimers with high cross-link density, mechanical strength, and thermal stability

Yunpeng Shen¹, Weishan Tang¹, Jinyang Li¹, Zhijun Ke¹, Lirong Liao¹, Peng Yang¹, Yuntao Lu¹, Xiaoping Rao (🖂)^{1, 2}

1 College of Chemical Engineering, Huaqiao University, Xiamen 361021, China

2 Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China E-mail: <u>raoxp@hqu.edu.cn</u>

This supporting information contains methods, 4 Figures and 5 Tables.

Methods

The crosslink density of vitrimers were calculated by this equation:

$$d = \frac{E^{*}}{3R(T_{s} + 40)} \tag{S1}$$

The unit volume crosslink density was set to $d \pmod{m^{-3}}$, E' denoted the storage modulus in the rubbery plateau region (T_g + 40 °C), R referred to the universal gas constant, and T_g was the glass transition temperature.

According to the method described in the literature, the shape memory properties of the material were characterized by single cantilever DMA mode. R_f and R_r were used to represent the shape fixation rate and shape recovery rate of each cycle, respectively, and were calculated by the following formula [1]:

$$R_f = \frac{\sigma_d}{\sigma_l} \times 100\%$$
(S2)

$$R_r = \frac{\sigma_d - \sigma_r}{\sigma_d} \times 100\%$$
(S3)

where σ_l represented the maximum deformation under load, while σ_d denoted the fixed deformation after cooling and load removal, and σ_r refered to the recovered deformation.

To study chemical recovery of HRSCDA-Epoxy_(x) vitrimers, 5 g small pieces were inserted into a pressure reactor that contained 50 mL of ethanol. The reaction temperature was 160 °C and this process lasted 4 hours. Then the remaining ethanol was detached by a rotary evaporator. Then concentrated solution was gained and cured in a PTFE mold. Finally, chemically recovered vitrimers were obtained. The mechanical properties of the physically recovered and chemically degraded recovered vitrimers were investigated by uniaxial tensile test.

(A)

Figure S1. (A) FT-IR spectra of HR, Intermediates, and HRSCDA, (B) ¹H NMR and (C) ¹³C NMR spectra of HRSCDA, (D) ¹H NMR and (E) ¹³C NMR spectra of HR, Intermediates and HRSCDA.

Figure S2. The HRSCDA-TTE_(x) vitrimers' curing reaction.

Figure S3. Healing of (A) the HRSCDA-TTE₍₂₀₎, (B) the HRSCDA-TTE₍₅₀₎ and (C) the HRSCDA-TTE₍₈₀₎ vitrimers with different heating times.

Figure S4. Shape memory digital photograph of the HRSCDA-Epoxy₍₈₀₎ vitrimers: (a–c) Double-shape memory of the the HRSCDA-Epoxy₍₈₀₎ vitrimers using the glass transition temperature (T_g) to fix in an 'S'-shape, and their recovery upon heating; (c–g) triple-shape memory of the vitrimer using the topology freezing transition temperature (T_v) to fix the 'O'-shape, and the T_g to fix the spiral shape, and their sequential recovery upon heating.

Samples	^a R	HRSCDA/ g	Carboxyl group/ mol	1,7- OD/ g	Epoxy group 1/ mol	TTE/ g	Epoxy group 2/ mol	Total epoxy group/ mol	
HRSCDA- TTE ₍₂₀₎	1:1	5.40	0.021	1.19	0.017	0.60	0.004	0.021	
HRSCDA- TTE ₍₅₀₎	1:1	5.40	0.021	0.75	0.010	1.50	0.011	0.021	
HRSCDA- TTE ₍₈₀₎	1:1	5.40	0.021	0.30	0.004	2.40	0.017	0.021	

Table S1. Formulations of the HRSCDA-TTE_(x) vitrimers

"x" in $\text{HRSCDA-TTE}_{(x)}$ represents the percentage of the number of TTE to the total number of epoxy groups.

 ${}^{a}R = carboxyl group content/epoxy group content.$

			• • •			1 5()					
_	Sample	Gel/ %	T _d / °C	Tg DSC/ °C	Tg DMA/ °C	Storage Modulus at 25 °C/ MPa	Storage Modulus at 150°C/ MPa	d/ mol m ⁻³	τ/ s	Tensile Strength/ MPa	Strain at break/ %
-	HRSCDA-Epoxy(0)	88.09 ± 0.36	324	34.4	50.6	2.8	4721	2.08	80.50	12.25 ± 1.75	1.05 ± 0.30
	HRSCDA-Epoxy ₍₂₀₎	93.86 ± 1.43	359	38.9	51.6	3.2	6360	2.78	65.58	15.25 ± 12.75	1.31 ± 0.97
	HRSCDA-Epoxy ₍₅₀₎	95.24 ± 1.39	354	49.1	56.7	5.4	6794	2.81	55.50	20.63 ± 3.37	1.49 ± 0.07
	HRSCDA-Epoxy ₍₈₀₎	98.39 ± 0.89	352	60.5	73.2	12.4	8474	3.00	50.50	40.19 ± 6.56	3.92 ± 0.72

Table S2. P	hysical	properties	of the	HRSCDA	$A-Epoxy_{(x)}$	vitrimers
	2	1 1				1

Material system	Tensile strength/ MPa	Elongation at break/ %	Ref	
Epoxidised soybean oil, fumaropimaric acid	~ 16.6	~ 88.9	[2]	
C-FPAE, BDB	~ 39.5	~ 9.1	[3]	
PWMPA, HDI, DBTDL	~ 16.8	~ 61	[4]	
HRSCDA, ZT-5190, 1,7-OD	~ 40.2	~ 3.9	This work	

Table S3. Comparison of the mechanical performance between other rosin-based vitrimers and

our HRSCDA-Epoxy $_{(x)}$ vitrimers

			Scratch v	vidth at 200	°C/		
Sample	μm						
	0 min	Rate	5 min	Rate	15 min	Rate	
HRSCDA-Epoxy(0)	14.29	0	12.21	14.6%	10.14	29.0%	
HRSCDA-Epoxy ₍₂₀₎	35.71	0	28.57	20.0%	21.43	40.0%	
HRSCDA-Epoxy(50)	121.43	0	64.29	47.1%	52.34	56.9%	
HRSCDA-Epoxy ₍₈₀₎	101.43	0	53.57	47.2%	42.86	57.7%	

Table S4. The change in scratch width of the HRSCDA- $Epoxy_{(x)}$ vitrimers

			Scratch v	vidth at 200	°C/			
Sample	μm							
	0 min	Rate	5 min	Rate	15 min	Rate		
HRSCDA-TTE(20)	38.46	0	23.84	38.0%	21.54	43.9%		
HRSCDA-TTE(50)	69.23	0	38.46	44.4%	23.07	66.7%		
HRSCDA-TTE(80)	76.92	0	30.77	60.0%	23.08	70.0%		

Table S5. The change in scratch width of the $HRSCDA-TTE_{(x)}$ vitrimers

References

- 1. Xu Y, Fu P, Dai S, Zhang H, Bi L, Jiang J, Chen Y. Catalyst-free self-healing fully bio-based vitrimers derived from tung oil: Strong mechanical properties, shape memory, and recyclability. Industrial Crops and Products, 2021, 171: 113978.
- Yang X, Guo L, Xu X, Shang S, Liu H. A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Materials & Design, 2020, 186: 108248.
- 3. Zeng Y, Li J, Liu S, Yang B. Rosin-based epoxy vitrimers with dynamic boronic ester bonds. Polymers, 2021, 13(19): 3386.
- 4. Li J, Yang W, Ning Z, Yang B, Zeng Y. Sustainable polyurethane networks based on rosin with reprocessing performance. Polymers, 2021, 13(20): 3538.